www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte Matrizenpolynom
Eigenwerte Matrizenpolynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte Matrizenpolynom: Hilfe zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:44 So 11.12.2005
Autor: keyzer86

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Sei A  [mm] \in \IR^{nxn} [/mm] eine Matrix, deren Eigenwerte  [mm] \lambda_{1},...,\lambda_{n} [/mm] bekannt sind.

1. Sei [mm] f(X):=a_{0}X^{k}+a_{1}X^{k-1}+...+a_{k-1}X+a_{k} [/mm] ein Polynom und betrachten wir
      [mm] f(A):=a_{0}A^{k}+a_{1}A^{k-1}+...+a_{k-1}A+a_{k} [/mm] Zeigen sie dass:

                       det(f(A))= [mm] \produkt_{i=1}^{n}f(\lambda_{i}). [/mm]

2. Finden Sie die Eigenwerte der Matrix (f(A))

Bitte helft mir hab versucht irgendwas mit diagonalisierbarkeit zu machen abwer da bin ich auch nich weiter gekommen ich hoffe ihr könnt mir helfen

MfG Keyzer

        
Bezug
Eigenwerte Matrizenpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 12.12.2005
Autor: banachella

Hallo!

Zu 1.:
Benutze, dass es [mm] $x_1,\dots,x_k\in\IC$ [/mm] gibt, so dass [mm] $f(X)=\prod\limits_{j=1}^k (X-x_j)$. [/mm] Dann gilt nämlich auch [mm] $f(A)=\prod\limits_{j=1}^k(A-x_jI)$ [/mm] und es folgt
[mm] $\det f(A)=\prod\limits_{j=1}^k\det(A-x_jI)=\prod\limits_{j=1}^k\prod\limits_{i=1}^n(\lambda_i-x_j)=\prod\limits_{i=1}^n\prod\limits_{j=1}^k(\lambda_i-x_j)=\prod\limits_{i=1}^nf(\lambda_i)$... [/mm]

Zu 2.:
Es ist relativ leicht einzusehen, dass [mm] $f(\lambda_i)$ [/mm] Eigenwerte von $f(A)$ sind. Denn wenn [mm] $Ax=\lambda_ix$, [/mm] dann ist [mm] $f(A)x=f(\lambda_i)x$. [/mm]
Hast du eine Idee, wie du zeigen kannst, dass das auch die einzigen Eigenwerte von [mm]f(A)[/mm] sind?

Gruß, banachella


Bezug
                
Bezug
Eigenwerte Matrizenpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mo 12.12.2005
Autor: keyzer86

Hi Banachella hab teilaufgabe 1 jetzt selber gelöst aber ich glaub ist trotzdem richtig hoff ich doch mal....habs allerdings sozusagen von "links nach recht" und nicht von "rechts nahch links" gemacht...(ich hoff du verstehst mich :))...

aber die Lösung für Teilaufgabe 2 kann ich gut gebrauchen danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de