www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte\Minimalpolynom
Eigenwerte\Minimalpolynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte\Minimalpolynom: Frage
Status: (Frage) beantwortet Status 
Datum: 19:46 So 15.05.2005
Autor: Staatsi21

Hallo ihr!

Komme mal wieder bei einer Aufgabe nicht weiter, vielleicht könnt ihr mir ja behilflich sein?!
Sie lautet so:

Sei K ein Körper, V ein K-Vektorraum endlicher Dimension und [mm] \alpha\in [/mm] End V. Sei weiter [mm] \lambda [/mm] ein Eigenwert von [mm] \alpha. [/mm]
Nun habe ich zu zeigen:
a) Ist [mm] p\in [/mm] K[x], so ist [mm] p(\lambda) [/mm] ein Eigenwert des Endomorphismus [mm] p(\alpha) [/mm] von V.
b) [mm] x-\lambda [/mm] teilt [mm] m_{\alpha} [/mm] (=das Minimalpolynom).

zu a): Ich will also zeigen, dass es ein [mm] v\in [/mm] V gibt mit [mm] v\not=0, [/mm] so dass [mm] v^{p(\alpha)}= p(\lambda)*v [/mm] ist.

Also habe ich geschrieben:
Sei [mm] p\in [/mm] K[x], d.h. p= [mm] \summe_{i=0}^{n} a_{i}*x^{i}. [/mm]
Es gilt: [mm] v^{p(\alpha)}= v^{\summe_{i=0}^{n} a_{i}*\alpha^{i}}= \summe_{i=0}^{n} a_{i}*(v^{\alpha})^{i}= \summe_{i=0}^{n} a_{i}*(\lambda*v)^{i}= [/mm] ...?
So, an dieser Stelle bin ich mir nun nicht sicher, wie ich weitermache, damit ich auf [mm] p(\lambda)*v [/mm] komme. Denn wenn ich [mm] (\lambda*v)^{i} [/mm] ausmultipliziere, erhalte ich doch auch [mm] v^{i} [/mm] und das brauche ich doch nicht, oder?
Oder ist mein Ansatz auch schon falsch?

zu b) So, nun muss ich ja zeigen, dass es ein [mm] c\in [/mm] K[x] gibt mit [mm] m_{\alpha}= [/mm] (x- [mm] \lampha)*c. [/mm] Oder sollte ich lieber einen anderen Weg gehen?
In der Vorlesung haben wir zu Minimalpolynomen einige Beispiele aufgeschrieben, z.B. [mm] m_{\alpha}= [/mm] x-1 [mm] \gdw \alpha= [/mm] id ; [mm] m_{\alpha}= x-\lambda \gdw \alpha= \lambda*id, 0\not=\lambda \in [/mm] K ; [mm] m_{\alpha}= [/mm] x [mm] \gdw \alpha=0. [/mm]
Also ist mir schon irgendwie klar, dass [mm] x-\lambda [/mm] das Minimalpolynom teilt, aber ich weiß nicht, wie ich es beweisen soll! Kann mir vielleicht jemand einen Tip geben?

Also, schon mal vielen Dank für eure Mühe, schöne Pfingsttage noch... Jessi

        
Bezug
Eigenwerte\Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mo 16.05.2005
Autor: Stefan

Liebe Jessica!

Dein Ansatz ist leider nicht ganz richtig.

Es sei also $p(x)= [mm] \sum\limits_{i=1}^na_i x^i$ [/mm] ein Polynom.

Dann ist zu zeigen:

[mm] $[p(\alpha)](v) [/mm] = [mm] p(\lambda) \cdot [/mm] v$.

Nun musst du dir erst einmal klar machen, dass aus:

[mm] $\alpha(v) =\lambda \cdot [/mm] v$

folgt:

[mm] $\alpha^i(v) [/mm] = [mm] \lambda^i \cdot [/mm] v$.

Das ist aber einfach und kann mit vollständiger Induktion nach $i$ bewiesen werden.

Daraus folgt dann:

[mm] $[p(\alpha)](v)$ [/mm]

[mm] $=\left[\sum\limits_{i=1}^na_i \cdot \alpha^i\right] [/mm] (v)$

[mm] $=\sum\limits_{i=10}^n a_i \cdot \alpha^i(v)$ [/mm]

[mm] $=\sum\limits_{i=1}^n a_i \cdot \lambda^i \cdot [/mm] v$

[mm] $=\left( \sum\limits_{i=1}^n a_i \cdot \lambda^i \right) \cdot [/mm] v$

[mm] $=p(\lambda) \cdot [/mm] v$.

Zur zweiten Aufgabe: [mm] $\lambda$ [/mm] ist eine Nullstelle des charakteristischen Polynoms, also auch des Minimalpolynoms (da das Minimalpolynom das charakteristische Polynom teilt). Daher ist [mm] $x-\lambda$ [/mm] ein Teiler des Minimalpolynoms.

Liebe Grüße
Stefan

Bezug
                
Bezug
Eigenwerte\Minimalpolynom: Vielen Dank!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 Mo 16.05.2005
Autor: Staatsi21

Hallo Stefan!

> Dein Ansatz ist leider nicht ganz richtig.

Naja, aber zumindest auch nicht ganz falsch! :-)
  

> Es sei also [mm]p(x)= \sum\limits_{i=1}^na_i x^i[/mm] ein Polynom.
>  
> Dann ist zu zeigen:
>  
> [mm][p(\alpha)](v) = p(\lambda) \cdot v[/mm].

Ist [mm] v^{p(\alpha)}=p(\lambda)*v [/mm] nicht das gleich, nur anders geschrieben?
  

> Nun musst du dir erst einmal klar machen, dass aus:
>  
> [mm]\alpha(v) =\lambda \cdot v[/mm]
>  
> folgt:
>  
> [mm]\alpha^i(v) = \lambda^i \cdot v[/mm].

Ja, da lag mein Problem. Hab es jetzt verstanden und kann es auch zeigen!
  

> Das ist aber einfach und kann mit vollständiger Induktion
> nach [mm]i[/mm] bewiesen werden.

> Zur zweiten Aufgabe: [mm]\lambda[/mm] ist eine Nullstelle des
> charakteristischen Polynoms, also auch des Minimalpolynoms
> (da das Minimalpolynom das charakteristische Polynom
> teilt). Daher ist [mm]x-\lambda[/mm] ein Teiler des
> Minimalpolynoms.

Mensch, doch so einfach und ich hab´s nicht allein hinbekommen! ;-(
Also, vielen Dank für deine Hilfe und die gute Erklärung!
Schönen Tag noch... Gruß Jessi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de