www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte berechnen
Eigenwerte berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 Di 11.09.2012
Autor: dudu93

Hallo, kann mal jemand über diese Aufgabe schauen, ob ich das so richtig gemacht habe? Ich habe mit Laplace nach zweiter Spalte entwickelt. Als Eigenwerte habe ich 2 und 0 raus.

Stimmt das so?

[]Hier klicken für Bild

LG

        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:04 Di 11.09.2012
Autor: leduart

Hallo
nein, du hast falsch aufgelöst. [mm] \lambda=2 [/mm] ist falsch.Wie du daruaf kommst ist schwer zu sehen,
tipp besser deine Rechnung ein, dann kann man zitieren und verbessern!
es ist einfcher nach der ersten zeile zu entwickeln!
Gruss leduart

Bezug
                
Bezug
Eigenwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:16 Di 11.09.2012
Autor: dudu93

Danke für die Antwort!

Habe nun nach der ersten Zeile entwickelt:

-lambda [mm] \begin{vmatrix} 2-lambda & 1 \\ 1 & 2-lambda \end{vmatrix} [/mm]

= -lambda [(2-lambda)(2-lambda)-1]

= -lambda (3 - 4lambda + [mm] lambda^2) [/mm]

Soll ich jetzt ausmultiplizieren? Oder für die rechte Seite die p/q-Formel anwenden? Doch was würde dann mit dem -lambda vorne passieren?

LG

Bezug
                        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:32 Di 11.09.2012
Autor: angela.h.b.


> Danke für die Antwort!
>  
> Habe nun nach der ersten Zeile entwickelt:
>  
> -lambda [mm]\begin{vmatrix} 2-lambda & 1 \\ 1 & 2-lambda \end{vmatrix}[/mm]
>  
> = -lambda [(2-lambda)(2-lambda)-1]
>  
> = -lambda (3 - 4lambda + [mm]lambda^2)[/mm]

Hallo,

Du hast nun das Produkt von [mm] -\lamda [/mm] und [mm] (\lambda^2-4\lambda+3). [/mm]
Ein Produkt ist =0, wenn einer der Faktoren =0 ist, hier:
wenn [mm] -\lambda=0 [/mm] oder [mm] \lambda^2-4\lambda+3=0. [/mm]
Bei der ersten Gleichung ist fast nichts zu tun, die zweite löse  mit der pq-Formel. Am Ende hast Du dann die 3 Eigenwerte.

LG Angela

>  
> Soll ich jetzt ausmultiplizieren? Oder für die rechte
> Seite die p/q-Formel anwenden? Doch was würde dann mit dem
> -lambda vorne passieren?
>  
> LG


Bezug
        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Di 11.09.2012
Autor: fred97

Was Du falsch gemacht hast, wurde Dir schon gesagt. Ich frage mich allerdings, warum Du [mm] $det(A-\lambda*E)$ [/mm] nicht mit der Regel von Sarrus berechnet hast. Da in  [mm] $A-\lambda*E$ [/mm] einige Nullen stehen, geht das mit Sarrus ganz ratzfatz und so umgehend wie geschwind.

Weniger fehleranfällig ist es auch.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de