www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Eigenwerte der Jacobi Modellma
Eigenwerte der Jacobi Modellma < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte der Jacobi Modellma: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:50 Mo 30.04.2012
Autor: student0815

Aufgabe
Die Modellmatrix A=[mm][/mm] [mm]\pmat{ 2 & -1 & 0 & \cdots \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2} \in \IR^{m x m} [/mm]  hat die Eigenwerte [mm]\lambda_j = 2 -2 cos(j h \pi)[/mm] mit [mm]j=1, \ldots m[/mm] und ist konsistent geordnet.
a.) Geben Sie die Eigenwerte [mm]\mu_j [/mm] der Iterationsmatrix J des Jacobi-Verfahrens an.
b.) Verifizeren Sie, dass [mm]\mu_j [/mm] Eigenwerte von J zu den Eigenvektoren [mm]v_j [/mm] sind, wobei die Einträge von [mm]v_j [/mm] gegeben sind mit:
[mm](v_j)_k = (sin(j k h \pi ) )_{k=1,\ldots ,m}[/mm] .


Hallo zusammen,
ich versuche mich gerade daran, erstmal Teil a.) zu lösen, also die Eigenwerte der Matrix [mm]J=-D^{-1}(L+R)[/mm] aus dem Jacobi Verfahren auszurechnen.
Erstmal habe ich versucht, es über die Formel
[mm]det (J- \lambda E)= 0[/mm] zu berechnen. Für m=2 oder m=3 kein Problem, aber ab m=4 klappt das nicht mehr so.
(Für m=2 erhält man als EW: [mm]\lambda_{1,2} = \pm 0.5[/mm] und für m=3 [mm]\lambda_{1} = 0[/mm] und [mm]\lambda_{2,3} = \pm \wurzel{\bruch{1}{2}}[/mm] ).
Tja für allgemeine m hab ich keine Ahnung wie ich das zeigen soll.
Ich habe jetzt auch nirgendes die konsistente Ordnung der Matrix A ausgenutzt, denn dort sind ja die EW bekannt?! Kann man das irgendwie ausnutzen?
Eine Matrix A heißt konsitent geordnet, wenn für A=L+D+R, wenn die EW der Matrizen [mm]J(\alpha) = -D^{-1} {\alpha L + \alpha^{-1} R }, \alpha \in \IC[/mm] unabhängig vom Parameter [mm]\alpha[/mm] sind, also stets gleich denen der Jacobi-Matrix J=J(1) sind.

Hat jemand einen Tipp für mich, wie man die EW der Matrix J berechnen könnte? ?
Danke im Voraus und viele Grüße.





        
Bezug
Eigenwerte der Jacobi Modellma: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 03.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de