www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte mit Störung
Eigenwerte mit Störung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 27.04.2012
Autor: Skorpinus

Aufgabe
Es sei $A$ eine Matrix mit Eigenwerten mit negativen Realteilen. Betrachte die gestörte Matrix $A+O(e)$. Zeige, für kleine $e [mm] \in \mathbb{R}$ [/mm] hat die gestörte Matrix auch nur negative Realteile.


Hallo zusammen,

obrige Aufgaben bzw. Frage ergibt sich im Rahmen meiner Diplomarbeit über Dynamische Systeme. Ich habe eine Taylorentwicklung nach einem Parameter e (reelle Zahl), die nach Umformungen folgende Form ergibt
$Id+ [mm] \epsilon\cdot (D_\epsilon D_x P(\xi_0,0)+O(\epsilon))$ [/mm]
Die Beträge der Eigenwerte dieses Terms müssen kleiner 1 sein, also müssen die Eigenwerte [mm] $D_\epsilon D_x P(\xi_0,0)+O(\epsilon)$ [/mm] negative Realteile haben. Ich hoffe, dass negative Realteile von den Eigenwerten von [mm] $D_\epsilon D_x P(\xi_0,0)$ [/mm] ausreichen, solange e nicht zu groß wird, konnte aber bisher keinen Beweis dazu finden.

Leider kenne ich mich in dieser Thematik nicht so genau aus. Zu dem Themenbereich habe ich bisher nur in Büchern der Numerik etwas gefunden, das mir aber bisher nicht weitergeholfen hat. Jede Lösung, Lösungshinweis oder Verweis, wo ich nachschauen könnte ist willkommen.

        
Bezug
Eigenwerte mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 27.04.2012
Autor: rainerS

Hallo!

> Es sei [mm]A[/mm] eine Matrix mit Eigenwerten mit negativen
> Realteilen. Betrachte die gestörte Matrix [mm]A+O(e)[/mm]. Zeige,
> für kleine [mm]e \in \mathbb{R}[/mm] hat die gestörte Matrix auch
> nur negative Realteile.
>  
> Hallo zusammen,
>  
> obrige Aufgaben bzw. Frage ergibt sich im Rahmen meiner
> Diplomarbeit über Dynamische Systeme. Ich habe eine
> Taylorentwicklung nach einem Parameter e (reelle Zahl), die
> nach Umformungen folgende Form ergibt
>  [mm]Id+ \epsilon\cdot (D_\epsilon D_x P(\xi_0,0)+O(\epsilon))[/mm]
>  
> Die Beträge der Eigenwerte dieses Terms müssen kleiner 1
> sein, also müssen die Eigenwerte [mm]D_\epsilon D_x P(\xi_0,0)+O(\epsilon)[/mm]
> negative Realteile haben. Ich hoffe, dass negative
> Realteile von den Eigenwerten von [mm]D_\epsilon D_x P(\xi_0,0)[/mm]
> ausreichen, solange e nicht zu groß wird, konnte aber
> bisher keinen Beweis dazu finden.
>
> Leider kenne ich mich in dieser Thematik nicht so genau
> aus. Zu dem Themenbereich habe ich bisher nur in Büchern
> der Numerik etwas gefunden, das mir aber bisher nicht
> weitergeholfen hat. Jede Lösung, Lösungshinweis oder
> Verweis, wo ich nachschauen könnte ist willkommen.

Warum haben dir die Lehrbücher der Numerik nicht weitergeholfen?

Stichwort: Satz von Bauer-Fike.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Eigenwerte mit Störung: Ergänzung
Status: (Frage) überfällig Status 
Datum: 18:44 Fr 27.04.2012
Autor: Skorpinus

Oh, jetzt wo du mich darauf hinweist, sehe ich, dass er mir tatsächlich weiterhelfen würde. Ich glaube, ich habe die Aussage des Satzes nur nicht sorgfältig genug gelesen.

Aber: Der Satz von Bauer-Fike setzt eine diagonalisierbare Matrix voraus. Im Allgemeinen wird mein A aber nicht diagonalisierbar sein.

Nachtrag:
Für folgende nicht diagonalisierbare Matrix
[mm] \pmat{ 1 & 0 \\ 1 & 1 } [/mm]

und folgende gestörte Matrix

[mm] \pmat{ 1 & e \\ 1 & 1 } [/mm]

hat man eine Differenz von den Eigenwerten von [mm] $\Delta \lambda [/mm] = [mm] \sqrt{e}$. [/mm]

Das wäre für die Aufgabenstellung aber auch kein Problem, da die Differenz immer noch eine stetige Funktion ist, wenn auch nicht in 0 differenzierbar. Ich bräuchte also ein allgemeineres Resultat für Matrizen, die mir die stetige Abhängigkeit von Störungen gibt...

Bezug
                        
Bezug
Eigenwerte mit Störung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 01.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de