www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:21 Mi 16.05.2012
Autor: lzaman

Aufgabe
Alle Eigenwerte und alle Eigenvektoren der Matrix

[mm]A=\pmat{ 8 & 3 & -6 \\ 0 & 2 & 0 \\ 6 & 2 & -4} [/mm] bestimmen.




Hallo, ich bin mir unsicher bei meiner Lösung für die Eigenwerte, deshalb habe ich gar nicht die Eigenvektoren berechnet. Vielleicht bekommen wir das ja zusammen hin...

Das sind meine Eigenwerte:

Gleichung [mm]det(A-\lambda E)=0[/mm] wird gelöst:

Nach Entwicklung der 2. Zeile entsteht die Gleichung

[mm]\vmat{ 8-\lambda & 3 & -6 \\ 0 & 2-\lambda & 0 \\ 6 & 2 & -4-\lambda }=(2-\lambda)\cdot\vmat{ 8-\lambda & -6 \\ 6 & -4-\lambda }=(2-\lambda)(\lambda^2-4\lambda-20)=0 [/mm]

Dann komme ich auf die Eigenwerte [mm]\lambda_1=2, \ \ \lambda_{2/3}=2\pm \wurzel{24}[/mm]

könntet Ihr das eventuell überprüfen?

Ich würde dann die Lösung für die Eigenvektoren angehen, wenn diese Werte korrekt sind.

P.S.: Sehe ich das richtig, dass es dann 3 Eigenvektoren gibt? Oder darf man das so nicht behaupten?

Danke




        
Bezug
Eigenwerte und Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 02:12 Mi 16.05.2012
Autor: leduart

Hallo
deine eigenwertgl ist falsch, wie kommst du auf die -20 in der Klammer? rechne nach. ja zu den 3 EW solltest du 3 eigenvektoren finden (alle vielfachen davon sind auch EV)
Gruss leduart

Bezug
                
Bezug
Eigenwerte und Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:14 Mi 16.05.2012
Autor: lzaman

Sorry, du hast volkommen recht, ich habe mich verrechnet.

Korrektur ergibt:

[mm]\vmat{ 8-\lambda & 3 & -6 \\ 0 & 2-\lambda & 0 \\ 6 & 2 & -4-\lambda }=(2-\lambda)\cdot\vmat{ 8-\lambda & -6 \\ 6 & -4-\lambda }=(2-\lambda)(\lambda^2-4\lambda+4)=(2-\lambda)(\lambda-2)^2=0[/mm]

Eigenwerte sind dann [mm]\lambda_{1/2/3}=2[/mm], richtig?

Oh man ich sehe schon, ein Sonderfall!

Ich versuche mal trotzdem die Eigenvektoren mit meinen Kentnissen zu bestimmen:

Zu [mm]\lambda=2[/mm] gehörige Eigenvektoren lösen das LGS [mm](A-2E)\vec{x}=0[/mm], also

[mm]\pmat{ 8-2 & 3 & -6 \\ 0 & 2-2 & 0 \\ 6 & 2 & -4-2}\vec{x}=\pmat{6 & 3 & -6 \\ 0 & 0 & 0 \\ 6 & 2 & -6}\vec{x}=0[/mm]

Umformung [mm](Z_3:=Z_3-Z_1)[/mm] und dann [mm]Z_2[/mm] mit [mm]Z_3[/mm] tauschen:

[mm]\pmat{6 & 3 & -6 \\ 0 & -1 & 0 \\ 0 & 0 & 0}\vec{x}=0[/mm]

Hier komme ich nicht weiter....

Danke




Bezug
                        
Bezug
Eigenwerte und Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 03:32 Mi 16.05.2012
Autor: leduart

Hallo
du hast doch x2=0, x1=x3
Gruss leduart

Bezug
                                
Bezug
Eigenwerte und Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:37 Mi 16.05.2012
Autor: lzaman

Das heißt dann, dass alle Eigenvektoren [mm]\vec{x}=\alpha \cdot (1,0,1)^T[/mm] die Gleichung lösen?

Natürlich gilt [mm]\alpha\neq 0[/mm]!

Danke



Bezug
                                        
Bezug
Eigenwerte und Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 06:38 Mi 16.05.2012
Autor: angela.h.b.


> Das heißt dann, dass alle Eigenvektoren [mm]\vec{x}=\alpha \cdot (1,0,1)^T[/mm]
> die Gleichung lösen?
>
> Natürlich gilt [mm]\alpha\neq 0[/mm]!

Hallo,

ja, genau.
All diese Vektoren sind Eigenwerte, und [mm] \vektor{1\\0\\1} [/mm] ist eine Basis des Eigenraumes zum Eigenwert 2.

LG Angela

>  
> Danke
>  
>  


Bezug
                                                
Bezug
Eigenwerte und Eigenvektoren: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 06:43 Mi 16.05.2012
Autor: leduart

Hallo
angela hat nen Tipfehler, eine Basis ist [mm] (1,0,1)^T [/mm] nicht [mm] (1,0,0)^T [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de