www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Eigenwerte von Inverser Matrix
Eigenwerte von Inverser Matrix < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte von Inverser Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 19.11.2004
Autor: Basic

Hallo, habe folgendes Problem:

zu Zeigen ist:
für die KonditionsZahl bezüglich der SpektralNorm einer regulären symmetrischen Matrix A gilt:

[mm]cond_2(A) = \bruch{max_{1\le k\le n}\left|\lambda_k\right|}{min_{1\le k\le n}\left|\lambda_k\right|} [/mm]

nun gilt ja
[mm]cond_2(A) = \left\mathcal{k}A^{-1}\right\mathcal{k}_2 \left\mathcal{k}A\right\mathcal{k}_2\cdot [/mm]

also
[mm] = \max\left\mathcal{f}\left\mathcal{j}\mu\right\mathcal{j} \mathcal{j} A^{-1}x = \mu x, fuer x \in \mathbb{R^n} \backslash \left\mathcal{f}0\right\mathcal{g} \right\mathcal{g} \cdot \max\left\mathcal{f}\left\mathcal{j}\lambda\right\mathcal{j} \mathcal{j} Ax = \lambda x, fuer x \in \mathbb{R^n} \backslash \left\mathcal{f}0\right\mathcal{g} \right\mathcal{g} \cdot [/mm]

wobei [mm]\mu,\lambda[/mm] natürlich die Eigenwerte von  [mm]A^{-1} und A[/mm] sind.

meine idee ist nun dass zur lösung gelten muss

[mm] \max\left\mathcal{f}\left\mathcal{j}\mu\right\mathcal{j} \mathcal{j} A^{-1}x = \mu x, fuer x \in \mathbb{R^n} \backslash \left\mathcal{f}0\right\mathcal{g} \right\mathcal{g} [/mm] = [mm] \max\left\mathcal{f}\left\mathcal{j}\bruch{1}{\lambda}\right\mathcal{j} \mathcal{j} Ax = \lambda x, fuer x \in \mathbb{R^n} \backslash \left\mathcal{f}0\right\mathcal{g} \right\mathcal{g} [/mm]

denn damit wäre ja der maximale eigenwert der inversen gleich dem minimalen eigenwert von A und nach multiplikation würde sich die zu beweisende gleichung ergeben.

wie aber zeige ich diese Behauptung ? (bzw. ist es überhaupt der richtige ansatz)

danke im vorraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte von Inverser Matrix: Hinweis
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 20.11.2004
Autor: AT-Colt

Hallo Basic,

Deine Idee, dass der maximale Eigenwert einer inversen Matrix gleich dem Kehrwert des minimalen Eigenwerts der ursprünglichen Matrix ist, ist absolut zutreffend.

Als Beweis folgendes:

Sei $A [mm] \in \IR^{n\timesn}$ [/mm] eine invertierbare Matrix mit Eigenwerten [mm] $\lambda_i$, [/mm] $i=1,...,n$ und zugehörigen Eigenvektoren [mm] $x_i$, [/mm] dann gilt wegen [mm] $A^{-1}A [/mm] = [mm] E_n$: [/mm]

[mm] $A^{-1}A x_i [/mm] = [mm] A^{-1} \lambda_i x_i [/mm] = [mm] E_n x_i [/mm] = [mm] x_i$ [/mm] also kurz
[mm] $A^{-1} \lambda_i x_i [/mm] = [mm] x_i$ [/mm]

Dies lässt keinen anderen Schluss zu, als dass [mm] $A^{-1}$ [/mm] auch den Vektor [mm] $x_i$ [/mm] als Eigenvektor hat, und dass der zugehörige Eigenwert [mm] $\bruch{1}{\lambda_i}$ [/mm] für alle $i=1,...,n$ sein muss.

Anschaulich ist das natürlich sofort klar, da [mm] $A^{-1}$ [/mm] eine Transformation des Vektorraums durch $A$ gerade rückgängig macht.

Dann kannst Du Dir auch die folgende Ungleichung für die Eigenwerte zunutze machen:

[mm] $|\lambda_{max}| \ge |\lambda_i| \ge |\lambda_{min}| \gdw \bruch{1}{|\lambda_{max}|} \le \bruch{1}{|\lambda_i|} \le \bruch{1}{|\lambda_{min}|}$ [/mm]

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de