Eindeutigkeit eines Körpers < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:11 So 14.06.2009 | Autor: | Liane |
Aufgabe | Es sei [mm] \IF_{p} [/mm] ein Körper der Primzahlordnung p und [mm] \overline{\IF_{p}} [/mm] ein algebraischer Abschluss. Man zeige: Zu jedem n [mm] \in \IN [/mm] existiert in [mm] \overline{\IF_{p}} [/mm] höchstens ein Unterkörper [mm] \IF_{p^{n}} [/mm] der Ordnung [mm] p^{n}. [/mm] |
Hallo alle zusammen,
zu dieser Aufgabe habe ich auch den Beweis, jedoch habe ich an einer Stelle Verständnisprobleme. Vielleicht kann mir ja jemand von euch helfen. Jedoch erstmal der Beweis:
zu zeigen ist, dass [mm] \IF_{p^{n}} [/mm] eindeutig bestimmt ist.
Beweis dazu:
Seien [mm] \IF_{p^{n}}, \IF'_{p^{n}} [/mm] zwei verschiedene Unterkörper der Ordnung [mm] p^{n} [/mm] von [mm] \overline{\IF_{p}}. [/mm] Alle Elemente aus [mm] \IF_{p^{n}} \cup \IF'_{p^{n}} [/mm] sind Nullstelle von [mm] x^{p^{n}}-x \in \IF_{p}[x]. [/mm]
[mm] \IF_{p^{n}} \cup \IF'_{p^{n}} [/mm] enthält mehr als [mm] p^{n} [/mm] Elemente.
[mm] x^{p^{n}}-x \in \IZ_{p}[x] [/mm] kann aber höchstens [mm] p^{n} [/mm] Nullstellen besitzen.
Meine Frage ist nun: Warum sind alle Elemente aus [mm] \IF_{p^{n}} \cup \IF'_{p^{n}} [/mm] Nullstellen von [mm] x^{p^{n}}-x \in \IF_{p}[x]?
[/mm]
Ich würde mich sehr freuen, wenn mir jemand vielleicht helfen könnte.
Sonst wünsche ich allen noch einen schönen Sonntag!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
lg liane
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:18 So 14.06.2009 | Autor: | andreas |
hi
> Meine Frage ist nun: Warum sind alle Elemente aus
> [mm]\IF_{p^{n}} \cup \IF'_{p^{n}}[/mm] Nullstellen von [mm]x^{p^{n}}-x \in \IF_{p}[x]?[/mm]
$0$ ist offenbar nullstelle des genannten polynom. sei nun $a [mm] \in \left( \IF_{p^{n}} \cup \IF'_{p^{n}} \right) \setminus \{0\}$, [/mm] oBdA $a [mm] \in \IF_{p^{n}} \setminus \{0\}$ [/mm] (für $a [mm] \in \IF'_{p^{n}} \setminus \{0\}$ [/mm] geht der beweis genauso). dann ist $a$ invertierbar, also $a [mm] \in \IF_{p^{n}}^\times$. [/mm] ansererseits ist $| [mm] \IF_{p^{n}}| [/mm] = [mm] p^n [/mm] - 1$. nach dem satz von lagrange ist [mm] $a^{p^n - 1} [/mm] = 1$, also [mm] $a^{p^n} [/mm] = a$.
grüße
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:29 So 14.06.2009 | Autor: | Liane |
Vielen Dank für die schnelle Antwort! Jetzt hab ich es auch verstanden!
Liebe Grüße
Liane
|
|
|
|