www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Eine Äquivalenzrelation
Eine Äquivalenzrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eine Äquivalenzrelation: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:15 Mo 10.12.2012
Autor: Coup

Aufgabe
R auf NxN sei gegeben:
$(a,b)R(c,d) : [mm] \gdw [/mm] a+d = b+c $
Handelt es sich bei R um eine Äquivalenzrelation ?

Hallo,
Begonnen mit der Reflexivität stelle ich mir grad die Frage
wie ich diese genau zeigen soll. Denn besteht mein Tupel ja z.b aus (a,b).
Wenn ich nun sage das a,bRb,a stünde hätte ich ja zwei verschiedene Elemente oder ist das doch so korrekt bezgl. der Reflexivität ?


lg
Micha

        
Bezug
Eine Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 Mo 10.12.2012
Autor: fred97

R ist reflexiv, wenn für (a,b) gilt:

   a+b=b+a

FRED

Bezug
                
Bezug
Eine Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Mo 10.12.2012
Autor: Coup

gilt das dann als selbsterklärend für mein anderes Tupel oder muss ich auch noch erwähnen das für [mm] $(c,d)\inN$ [/mm] c+d=d+c gilt ?

Bezug
                        
Bezug
Eine Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mo 10.12.2012
Autor: Diophant

Hallo,

deine Paare sind doch aus [mm] \IN\times\IN, [/mm] die Addition ist somit die Addition natürlicher Zahlen und damit kommutativ.


Gruß, Diophant

Bezug
                                
Bezug
Eine Äquivalenzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Mo 10.12.2012
Autor: Coup

Vielen Dank für den Hinweis :)
Für meine Symmetrie gilt ja, dass $ (a,b)R(d,c) [mm] \gdw [/mm] a+c=b+d $ Somit trifft auch diese zu.
Doch ich kenne die Transivität nur bei 3 Elementen. Da ich hier aber nur x und y für meine Tupel habe frage ich mich :Was bedeutet hier Transitiv ?
Ist nicht schon laut Def. $(a,b)R(c,d)$ Transitiv ?


Vielen Dank ! : )

Bezug
                                        
Bezug
Eine Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mo 10.12.2012
Autor: angela.h.b.

Hallo,

ich glaube, Du hast etwas Wesentliches nicht verstanden.

Betrachtet wird hier die Relation R auf  der Menge [mm] M:=\IN\times\IN [/mm] mit
$ (a,b)R(c,d) : [mm] \gdw [/mm] a+d = b+c $.

Wir halten zunächst einmal fest, daß die Elemente von M Zahlenpaare sind, und daß oben erklärt wird, wann zwei Zahlenpaare in Relation zueinander stehen.


Es gilt z.B. (1,2)R(3,4), denn es ist 1+4=2+3.
Also ist (Achtung, Achtung!) das Paar (von Paaren)   [mm] ((1,2),(3,4))\in [/mm] R.
Es ist R eine Relation auf M, also ist [mm] R\subseteq M\times M=(\IN\times\IN)\times(\IN\times\IN). [/mm]


>  Für meine Symmetrie

Wir interessieren uns aber nicht für Deine Symmetrie, sondern für die von R...

> gilt ja, dass [mm](a,b)R(d,c) \gdw a+c=b+d[/mm]


Für die Symmetrie mußt Du prüfen, ob für [mm] x,y\in [/mm] M mit xRy folgt, daß auch yRx.

Ich mache es mal vor:

Seien [mm] x:=(x_1,x_2), y:=(y_1, y_2)\in [/mm] M und gelte xRy.

<==> [mm] x_1+y_2=x_2+y_1 [/mm]
<==> [mm] y_1+x_2=y_2+x_1 [/mm]
<==> [mm] (y_1,y_2)R(x_1,x_2) [/mm]
<==> xRy

Also ist die Relation symmetrisch.

> Somit trifft auch diese zu.
>  Doch ich kenne die Transivität nur bei 3 Elementen. Da
> ich hier aber nur x und y für meine Tupel habe frage ich
> mich :Was bedeutet hier Transitiv ?
>  Ist nicht schon laut Def. [mm](a,b)R(c,d)[/mm] Transitiv ?

Für die Transitivität  ist für [mm] x,y,z\in [/mm] M zu zeigen, daß gilt

(xRy und yRz) ==> xRz.


Nun machst Du's wieder so wie oben:

seien [mm] x:=(x_1,x_2), y:=(y_1, y_2), z:=(z_1,z_2) \in [/mm] M und gelte ... ... ... usw.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de