www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Einfache Integralaufgabe lösen
Einfache Integralaufgabe lösen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Integralaufgabe lösen: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:46 Do 12.01.2012
Autor: Sparrow

Aufgabe
[mm]\integral{\wurzel{2-3x} dx}[/mm]


Davon einfach die Stammfunktion bilden



Lösungsansatz ist ganz einfach:

[mm]\integral{\wurzel{2-3x} dx}[/mm] = [mm]\integral{\wurzel{2-3x} dx} = (2-3x)^\bruch{1}{2}dx} = \bruch{2}{3}(2-3x)^\bruch{3}{2} * (-\bruch{1}{3}) + c[/mm]

Meine Frage ist wie man beim Nachdifferenzieren auf - 1/3 kommt. Die Klammer ist logisch und löse ich auch, aber wieso dann - 1/3  .... wie ist da die genaue Regel, weil ich doch normal aufleiten muss?

gemäß der Formel 1/n+1 * [mm] x^n+1 [/mm] ...

also nur ein kurzer gedankenanstoss wieso ich hier - 1/3 schreibe.

Mir ist auch klar das  F'(x) = Das Integral und da muss ja das -1/3 auch rausfallen,... ich selbst hatte an dieser stelle naemlich [mm] -3/2x^2 [/mm] stehen...


Danke für eure Hilfe!

Basti



        
Bezug
Einfache Integralaufgabe lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Fr 13.01.2012
Autor: barsch

Hallo,


> [mm]\integral{\wurzel{2-3x} dx}[/mm]
>  
>
> Davon einfach die Stammfunktion bilden
>  
>
> Lösungsansatz ist ganz einfach:
>  
> [mm]\integral{\wurzel{2-3x} dx}[/mm] = [mm]\integral{\wurzel{2-3x} dx} = (2-3x)^\bruch{1}{2}dx} = \bruch{2}{3}(2-3x)^\bruch{3}{2} * (-\bruch{1}{3}) + c[/mm]
>  
> Meine Frage ist wie man beim Nachdifferenzieren auf - 1/3
> kommt. Die Klammer ist logisch und löse ich auch, aber
> wieso dann - 1/3  .... wie ist da die genaue Regel, weil
> ich doch normal aufleiten muss?
>  
> gemäß der Formel 1/n+1 * [mm]x^n+1[/mm] ...
>
> also nur ein kurzer gedankenanstoss wieso ich hier - 1/3
> schreibe.
>  
> Mir ist auch klar das  F'(x) = Das Integral und da muss ja
> das -1/3 auch rausfallen,... ich selbst hatte an dieser
> stelle naemlich [mm]-3/2x^2[/mm] stehen...
>  
>
> Danke für eure Hilfe!
>  
> Basti

wenn du [mm](2-3x)^\bruch{1}{2}[/mm] betrachtest, dann ist das nicht anderes als u(v(x)) mit [mm]u(x)=x^\bruch{1}{2}[/mm] und [mm]v(x)=2-3\cdot{x}[/mm]. Ableiten würde man das mit der Kettenregel. Beim Integrieren musst du die umgekehrte Kettenregel anwenden. Du musst sowohl die innere als auch äußere Funktion betrachten.

Hilft das als Denkanstoß?

Gruß
barsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de