www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Einfache Regression
Einfache Regression < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfache Regression: Parameter b, Summenformel
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 15.07.2015
Autor: into

Aufgabe
Bestimme Parameter b
[mm] \summe_{i=1}^{25}xi= [/mm] 60,5
[mm] \summe_{i=1}^{25}xi^2=167,71 [/mm]
[mm] \summe_{i=1}^{25}xi*yi [/mm] = 111,93
1/25 [mm] \summe_{i=1}^{25} [/mm] yi =1,628

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich scheitere gerade daran, die Summenformeln umzuformen, dass sie in die Formel für die Berechnung des Parameter b´s hineinpasst Ich würde die obere Formel verwenden da ich xi*yi schon angegeben habe.
Aber ich weiß gerade nicht genau wie ich  [mm] \overline{y} [/mm] berechne, da mich das 1/25 vor der Summenformel stört. [mm] \overline{x} [/mm] würde ich ja berechnen indem ich einfach 60,5/25=2,42 nehme, oder täuscht mich das ? Zudem weiß ich auch nicht recht wie ich das [mm] xi^2 [/mm] und xi im Teil des Nenners zusammen in einer Klammer bringe. Ich hätte einfach (60,5 - [mm] 2,42)^2 [/mm] genommen bin mir aber nicht sicher.

b= (xi*yi) - [mm] n*\overline{x}*\overline{y} [/mm] / [mm] (xi-\overline{x})^2 [/mm]

oder

b= (xi - [mm] \overline{x}) [/mm] (yi- [mm] \overline{y}) [/mm] / ( [mm] xi-\overline{x})^2 [/mm]

Mein Ansatz wäre:

b= 111,93-25* [mm] 2,42*\overline{y}/(60,5-2,42)^2 [/mm]

Allerdings denke ich das zumindest mein berechneter Nenner falsch ist. Könnte jemand mir vielleicht verraten ob es richtig ist und wie ich [mm] \overline{y} [/mm] herausfinde, dass ist gerade mein irgendwie größtes Problem. Entweder es ist so einfach das es mir nicht einfällt oder aber ich habe ein großes  Brett vor meinem Kopf.

Würde mich sehr über eine Antwort freuen und schon einmal danke für jede Bemühung :)

        
Bezug
Einfache Regression: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Mi 15.07.2015
Autor: chrisno


> Bestimme Parameter b
>  [mm]\summe_{i=1}^{25}xi=[/mm] 60,5
> [mm]\summe_{i=1}^{25}xi^2=167,71[/mm]
>  [mm]\summe_{i=1}^{25}xi*yi[/mm] = 111,93
>  1/25 [mm]\summe_{i=1}^{25}[/mm] yi =1,628
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>
> ich scheitere gerade daran, die Summenformeln umzuformen,
> dass sie in die Formel für die Berechnung des Parameter
> b´s hineinpasst Ich würde die obere Formel verwenden da
> ich xi*yi schon angegeben habe.

Das ist ein guter Ansatz. Allerdings ist die Formel total misslungen.

> Aber ich weiß gerade nicht genau wie ich  [mm]\overline{y}[/mm]
> berechne, da mich das 1/25 vor der Summenformel stört.

Da steht:
Alle y-Werte aufaddieren und durch die Anzahl teilen.
Durch die Division durch 25 wird genau der Mittelwert berechnet.

> [mm]\overline{x}[/mm] würde ich ja berechnen indem ich einfach
> 60,5/25=2,42 nehme, oder täuscht mich das ?

Nein, du täuschst Dich nicht.

> Zudem weiß
> ich auch nicht recht wie ich das [mm]xi^2[/mm] und xi im Teil des
> Nenners zusammen in einer Klammer bringe. Ich hätte
> einfach (60,5 - [mm]2,42)^2[/mm] genommen bin mir aber nicht
> sicher.
>  
> b= (xi*yi) - [mm]n*\overline{x}*\overline{y}[/mm] /
> [mm](xi-\overline{x})^2[/mm]

$b = [mm] \frac{SS_{xy}}{SS_{xx}} [/mm] = [mm] \frac{\frac{1}{n} \sum\limits_{i=1}^n (x_i- \bar x)(y_i- \bar y)}{\frac{1}{n} \sum\limits_{i=1}^n (x_i- \bar x)^2} [/mm] = [mm] \frac{\sum\limits_{i=1}^n (x_i- \bar x)(y_i- \bar y)}{\sum\limits_{i=1}^n \left(x_i- \bar x\right)^2} [/mm] = [mm] \frac{n\sum\limits_{i=1}^n x_i y_i - \sum\limits_{i=1}^n x_i \sum\limits_{i=1}^n y_i}{n \sum\limits_{i=1}^n x_i^2 - \left(\sum\limits_{i=1}^n x_i\right)^2} [/mm] $

Für die Version ganz rechts hast Du alle Informationen.


>  
> oder
>
> b= (xi - [mm]\overline{x})[/mm] (yi- [mm]\overline{y})[/mm] / (
> [mm]xi-\overline{x})^2[/mm]
>  
> Mein Ansatz wäre:
>  
> b= 111,93-25* [mm]2,42*\overline{y}/(60,5-2,42)^2[/mm]
>
> Allerdings denke ich das zumindest mein berechneter Nenner
> falsch ist. Könnte jemand mir vielleicht verraten ob es
> richtig ist und wie ich [mm]\overline{y}[/mm] herausfinde, dass ist
> gerade mein irgendwie größtes Problem. Entweder es ist so
> einfach das es mir nicht einfällt oder aber ich habe ein
> großes  Brett vor meinem Kopf.

Ich hoffe, das Brett ist nun weg.

>
> Würde mich sehr über eine Antwort freuen und schon einmal
> danke für jede Bemühung :)


Bezug
                
Bezug
Einfache Regression: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 15.07.2015
Autor: into

Danke für den Hinweis mit der Formel,

Somit muss ich einfach 1,628*25 rechnen, da ich keine weiteren Werte habe um
[mm] \summe_{i=1}^{25}=yi [/mm] herauszufinden und sie nicht aufeinander addieren kann?

Bezug
                        
Bezug
Einfache Regression: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Mi 15.07.2015
Autor: chrisno


> Danke für den Hinweis mit der Formel,
>  
> Somit muss ich einfach 1,628*25 rechnen,

ja sicher

> da ich keine weiteren Werte habe um
>  [mm]\summe_{i=1}^{25}=yi[/mm] herauszufinden und sie nicht
> aufeinander addieren kann?

das wäre auch sehr umständlich.

Du hast eine Zahl die Du suchst, nur ist sie durch 25 geteilt. Da ist "mal 25" doch die Methode, um an die Zahl zu kommen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de