www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - "Einfache" transformation
"Einfache" transformation < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Einfache" transformation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:23 Mi 06.11.2013
Autor: semirm

Aufgabe
[mm] C_{1}e^{Kx(1+i)}+C_{2}e^{Kx(-1+i)}+C_{3}e^{Kx(-1-i)}+C_{4}e^{Kx(1-i)} [/mm]

mit

[mm] sin(Kx)=(e^{iKx}+e^{-iKx})/(2i) [/mm]
[mm] cosKx=(e^{iKx}-e^{-iKx})/(2) [/mm]

zur

[mm] (e^{Kx})*(C_{1}sin(Kx)+C_{2}cos(Kx))+(e^{-Kx})(C_{3}sin(Kx)+C_{4}cos(Kx)) [/mm]

Wie schaft man das? Ich hab alles geschaut, aber keine Beziehungen gefunden. Ich habe ja [mm] e^{iKx} [/mm] und [mm] e^{-iKx} [/mm] ausgedruckt und eingesetzt aber von da komme ich nicht weiter... mit ganze isin(Kx) und cos(Kx) wobei sich gar nix kreuzen kann und da ich keine andere Beziehungen kenne kann ich nix weiter tun.... Kann mir jemand da weiter helfen ? Oder wenigstens die Beziehungen sagen oder wo ich genauer hinschauen soll und nicht die ganze Mathe Bücher durchzusuchen

Danke MfG.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
"Einfache" transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Mi 06.11.2013
Autor: leduart

Hallo
Das ist keine Umformung, biedes sind allgemeine Lösungen einer Dgl 4 ter Ordnung, mit 4 linear unabhängigen Lösungen
$ [mm] C_{1}e^{Kx(1+i)}+C_{2}e^{Kx(-1+i)}+C_{3}e^{Kx(-1-i)}+C_{4}e^{Kx(1-i)} [/mm] $
[mm] y_1(x)=e^{Kx(1+i)} [/mm]
[mm] y_2(x)=e^{Kx(-1+i)} [/mm]
[mm] y_3(x)=e^{Kx(-1-i)} [/mm]
[mm] y_4(x)=e^{Kx(1-i)} [/mm]
jede Linearkombination dieser Lösungen ist wieder eine Lösung
zum Lösen der Dgl  ist der komplexe Ansatz  einfacher als der mit sin und cos. Physikalisch relevant aber ist eine reelle Lösung. Durch Linearkombination von [mm] y_1 [/mm] und [mm] y_2 [/mm] z:B erhälst du die ersten 2 lin unabh. reellen Lösungen.
mit [mm] ay_1+ay_4=2ae^{Kx}*cos(Kx) [/mm]
und [mm] iby_1-iby_4=2be^{kx}sin(kx) [/mm]
entsprechend  [mm] y_2 [/mm] und [mm] y_3 [/mm] hast du ein reelles Lösungssystem.

Ich musste sehen, dass es sich hier NICHT um eine umformung handelt, um diese Antwort zu geben.
Besser wär es gewesen du hättest etwa gefragt, warum kann man die lösung der Dgl... so oder so angeben!, also deine frage in einen Zusammenhang stellen!
Gruss leduart



Bezug
                
Bezug
"Einfache" transformation: Danke
Status: (Frage) beantwortet Status 
Datum: 23:54 Mi 06.11.2013
Autor: semirm

Hallo und Danke für die Antwort.

Ich hatte quasi eine Lösung wo es so erklärt würde als es eine normale Umformung ist.

Das da oben ist eigentlich eine Durchbiegung also beide Ausdrucke sind gleich w. Und es handelt sich um eine Winkler Bettung.....

Für nächstes mal merke ich das ;)

Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de