www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Einfacher Beweis
Einfacher Beweis < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einfacher Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Sa 03.11.2012
Autor: Anazeug

Aufgabe
z.z. [mm] \forall [/mm] a,b [mm] \in \IR [/mm] : 0 [mm] \le [/mm] a [mm] \le [/mm] b [mm] \Rightarrow [/mm] a [mm] \le \wurzel{ab} \le \bruch{a+b}{2} \le [/mm] b

Hallo,

meine Ansätze Anordnungsaxiome:
wenn 0 [mm] \le [/mm] a und 0 [mm] \le [/mm] b [mm] \Rightarrow [/mm] 0 [mm] \le [/mm] ab
und wenn a [mm] \le [/mm] b [mm] \Rightarrow [/mm]  a+c [mm] \le [/mm] b+c

Das hilft mir nur nicht wirklich weiter ... bin für jeden Tipp dankbar ...

muss ich irgendwelche Körperaxiome nutzen?


        
Bezug
Einfacher Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Sa 03.11.2012
Autor: abakus


> z.z. [mm]\forall[/mm] a,b [mm]\in \IR[/mm] : 0 [mm]\le[/mm] a [mm]\le[/mm] b [mm]\Rightarrow[/mm] a [mm]\le \wurzel{ab} \le \bruch{a+b}{2} \le[/mm]
> b
>  Hallo,
>
> meine Ansätze Anordnungsaxiome:
> wenn 0 [mm]\le[/mm] a und 0 [mm]\le[/mm] b [mm]\Rightarrow[/mm] 0 [mm]\le[/mm] ab
>  und wenn a [mm]\le[/mm] b [mm]\Rightarrow[/mm]  a+c [mm]\le[/mm] b+c
>  
> Das hilft mir nur nicht wirklich weiter ... bin für jeden
> Tipp dankbar ...

Für einen Teil der Ungleichungskette würde das genügen:
Aus a<b folgt a/2 + a/2  < a/2 + b/2 < b/2 + b/2.

>  
> muss ich irgendwelche Körperaxiome nutzen?

Zur Beweisfindung solltest du mal alle Terme der Kettenungleichung quadrieren.
Gruß Abakus

>  


Bezug
                
Bezug
Einfacher Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Sa 03.11.2012
Autor: Anazeug


>
> > z.z. [mm]\forall[/mm] a,b [mm]\in \IR[/mm] : 0 [mm]\le[/mm] a [mm]\le[/mm] b [mm]\Rightarrow[/mm] a [mm]\le \wurzel{ab} \le \bruch{a+b}{2} \le[/mm]
> > b
>  >  Hallo,
> >
> > meine Ansätze Anordnungsaxiome:
> > wenn 0 [mm]\le[/mm] a und 0 [mm]\le[/mm] b [mm]\Rightarrow[/mm] 0 [mm]\le[/mm] ab
>  >  und wenn a [mm]\le[/mm] b [mm]\Rightarrow[/mm]  a+c [mm]\le[/mm] b+c
>  >  
> > Das hilft mir nur nicht wirklich weiter ... bin für jeden
> > Tipp dankbar ...
>  Für einen Teil der Ungleichungskette würde das
> genügen:
>  Aus a<b folgt a/2 + a/2  < a/2 + b/2 < b/2 + b/2.
>  >  
> > muss ich irgendwelche Körperaxiome nutzen?
>  Zur Beweisfindung solltest du mal alle Terme der
> Kettenungleichung quadrieren.
>  Gruß Abakus
>  >  


Okay, danke, so kann ich auf jeden Fall schonmal zeigen, dass a [mm] \le [/mm] (a+b)/2 [mm] \le [/mm] b ist, aber wie zeige ich das a [mm] \le \wurzel{ab} \le [/mm] (a+b)/2 ist? wenn ich das quadriere, habe ich: a² [mm] \le [/mm] ab [mm] \le [/mm] (a+b)²/4  ... was sehe ich da nun?

Bezug
                        
Bezug
Einfacher Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Sa 03.11.2012
Autor: abakus


> >
> > > z.z. [mm]\forall[/mm] a,b [mm]\in \IR[/mm] : 0 [mm]\le[/mm] a [mm]\le[/mm] b [mm]\Rightarrow[/mm] a [mm]\le \wurzel{ab} \le \bruch{a+b}{2} \le[/mm]
> > > b
>  >  >  Hallo,
> > >
> > > meine Ansätze Anordnungsaxiome:
> > > wenn 0 [mm]\le[/mm] a und 0 [mm]\le[/mm] b [mm]\Rightarrow[/mm] 0 [mm]\le[/mm] ab
>  >  >  und wenn a [mm]\le[/mm] b [mm]\Rightarrow[/mm]  a+c [mm]\le[/mm] b+c
>  >  >  
> > > Das hilft mir nur nicht wirklich weiter ... bin für jeden
> > > Tipp dankbar ...
>  >  Für einen Teil der Ungleichungskette würde das
> > genügen:
>  >  Aus a<b folgt="" a="" 2="" +="" <="" b="" 2.<br="">>  >  >  
> > > muss ich irgendwelche Körperaxiome nutzen?
>  >  Zur Beweisfindung solltest du mal alle Terme der
> > Kettenungleichung quadrieren.
>  >  Gruß Abakus
>  >  >  
>
>
> Okay, danke, so kann ich auf jeden Fall schonmal zeigen,
> dass a [mm]\le[/mm] (a+b)/2 [mm]\le[/mm] b ist, aber wie zeige ich das a [mm]\le \wurzel{ab} \le[/mm]
> (a+b)/2 ist? wenn ich das quadriere, habe ich: a² [mm]\le[/mm] ab
> [mm]\le[/mm] (a+b)²/4  ... was sehe ich da nun?

Wesentlich ist der Mittelteil:
[mm]ab\le(a+b)^2/4[/mm]
ist äquivalent zu
[mm]4ab\le(a+b)^2[/mm]
bzw.
[mm]4ab \le a^2+2ab+b^2[/mm]
bzw.
[mm]0 \le a^2-2ab+b^2[/mm]
Macht es Klick????
Gruß Abakus

</b>

Bezug
                                
Bezug
Einfacher Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Sa 03.11.2012
Autor: Anazeug


>  Wesentlich ist der Mittelteil:
>  [mm]ab\le(a+b)^2/4[/mm]
>  ist äquivalent zu
> [mm]4ab\le(a+b)^2[/mm]
>  bzw.
>  [mm]4ab \le a^2+2ab+b^2[/mm]
>  bzw.
>  [mm]0 \le a^2-2ab+b^2[/mm]
>  Macht es Klick????
>  Gruß Abakus
>  
> </b>

nein xD
Sorry...

aber danke für deine bemühungen

Bezug
                                        
Bezug
Einfacher Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Sa 03.11.2012
Autor: M.Rex


>
> >  Wesentlich ist der Mittelteil:

>  >  [mm]ab\le(a+b)^2/4[/mm]
>  >  ist äquivalent zu
> > [mm]4ab\le(a+b)^2[/mm]
>  >  bzw.
>  >  [mm]4ab \le a^2+2ab+b^2[/mm]
>  >  bzw.
>  >  [mm]0 \le a^2-2ab+b^2[/mm]
>  >  Macht es Klick????
>  >  Gruß Abakus
>  >  
> >
>
> nein xD
>  Sorry...

Gehen wir einen SChritt weiter:
$ 0 [mm] \le a^2-2ab+b^2 [/mm] $
$ [mm] \Leftrightarrow0\le(a-b)^2 [/mm] $

>  
> aber danke für deine bemühungen


Bezug
                                                
Bezug
Einfacher Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 Sa 03.11.2012
Autor: Anazeug

Natürlich xD

Sorry, komm mir grad n bisschen doof vor, danke euch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de