www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Einführung in Kuvendisskusion
Einführung in Kuvendisskusion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einführung in Kuvendisskusion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mi 23.05.2007
Autor: Shabi_nami

Aufgabe
f(x)= [mm] \bruch{1}{4} (x^3- 9x^2+15x-4) [/mm]

1)An welchen Stellen hat der Graph eine waagerechte Tangente?
2) Bestimmen sie die Monotoniebereiche!
3) bestimmen sie das lokale Maximum und Minimum

die ersten beiden Aufgaben bekomm ich selber noch hin aber ich weiß nicht wie mir diese Teilaufgaben helfen sollen die dritte Aufgabe zu lösen.

1) An den Stellen x=5 und x=1

2) Bereiche: x<1 steigend
                1<x<5 fallend
                    x>5 steigend

Aber wie mach ich das mit 3)????

Danke für eure Hilfe!!
PS: durch dieses Forum und eure Hilfe hab ich es geschafft in Mathe von 3-4 auf eine 2 zu kommen ( 2x2 geschrieben!!!krieg eine 2 auf dem Zeugnis!!!) Ihr seid echt super!!!!!!!
LG Shabi

        
Bezug
Einführung in Kuvendisskusion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 23.05.2007
Autor: mathmetzsch

Hallo Shabi,

> f(x)= [mm]\bruch{1}{4} (x^3- 9x^2+15x-4)[/mm]
>  
> 1)An welchen Stellen hat der Graph eine waagerechte
> Tangente?
>  2) Bestimmen sie die Monotoniebereiche!
>  3) bestimmen sie das lokale Maximum und Minimum
>  die ersten beiden Aufgaben bekomm ich selber noch hin aber
> ich weiß nicht wie mir diese Teilaufgaben helfen sollen die
> dritte Aufgabe zu lösen.
>  
> 1) An den Stellen x=5 und x=1

Das ist korrekt!

>  
> 2) Bereiche: x<1 steigend
>                  1<x<5 fallend
>                      x>5 steigend

Du solltest hier mit den Begriffen monoton bzw. streng monoton arbeiten. Also für [mm] x\le [/mm] 1 steigt die Funktion streng monoton, für [mm]1\le x\le 5[/mm] fällt sie streng monoton und für [mm] x\ge [/mm] 5 steigt sie streng monoton!

>  
> Aber wie mach ich das mit 3)????

Bei der Aufgabe ist nicht mehr viel zu tun. Du sollst schauen, ob deine Punkte, die du oben gefunden hast, Maxima oder Minima sind. Sprich: 2. Ableitung bilden, einsetzen, schauen ob f'' größer oder kleiner 0 ist!

>  
> Danke für eure Hilfe!!
>  PS: durch dieses Forum und eure Hilfe hab ich es geschafft
> in Mathe von 3-4 auf eine 2 zu kommen ( 2x2
> geschrieben!!!krieg eine 2 auf dem Zeugnis!!!) Ihr seid
> echt super!!!!!!!
>  LG Shabi

Grüße, Daniel

Bezug
                
Bezug
Einführung in Kuvendisskusion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Mi 23.05.2007
Autor: Shabi_nami

Ja ich weiß das mit streng montoton und so.....wollt es verkürzen^^

Wie gesagt wir sind in den Anfängen dieses themas. Wir hatten das noch nicht mit der 2. Ableitung gelöst. Gibt es ne andere Möglichkeit?

Bezug
                        
Bezug
Einführung in Kuvendisskusion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 23.05.2007
Autor: Steffi21

Hallo,

du siehst es an der Monotonie,
bis x=1 steigt die Funktion, dann fällt sie, also an der Stelle x=1 liegt ein Maximum vor,
bis x=5 fällt die Funktion, dann steigt sie, also an der Stelle x=5 liegt ein Minimum vor,

gebe dann noch die konkreten Punkte an,
Maximum [mm] P_m_a_x(1; [/mm] f(1))
Minimum [mm] P_m_i_n [/mm] (5; f(5))

[Dateianhang nicht öffentlich]

Steffi


Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de