Eingeschränkte lin. Abb. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:26 Sa 29.04.2006 | Autor: | Sly |
Aufgabe | Seien [mm]V[/mm] und [mm]W[/mm] K-Vektorräume und sei [mm]U \subset V[/mm] ein Unterraum. Beweisen Sie, dass die Zuordnung [mm]f \longrightarrow f|_U[/mm] eine lineare Abbildung [mm]R : Hom(V,W) \longrightarrow Hom(U,W)[/mm] induziert. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo
Ich hätte eine Verständnisfrage zu obiger Aufgabe.
Und zwar, was bedeutet überhaupt dieses [mm]f|_U[/mm]? Ich hab gehört, das soll die lineare Abbildung sein, die von [mm]f[/mm] durch Einschränkung auf [mm]U[/mm] hervorgeht. Nur was bedeutet das genau?
Vielleicht könnte mir jemand ein Beispiel zeigen?
Und nochwas: Was ich noch nie so RICHTIG verstanden habe, ist, was dieses "induzieren" genau in diesem Zusammenhang bedeutet. Bedeutet es, dass die Zuordnung selber schon [mm]R[/mm] ist, oder dass aus der Zuordnung folgt, dass es so ein [mm]R[/mm] gibt?
Ich bitte um Erklärung!
Danke im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:32 So 30.04.2006 | Autor: | felixf |
Hallo!
> Seien [mm]V[/mm] und [mm]W[/mm] K-Vektorräume und sei [mm]U \subset V[/mm] ein
> Unterraum. Beweisen Sie, dass die Zuordnung [mm]f \longrightarrow f|_U[/mm]
> eine lineare Abbildung [mm]R : Hom(V,W) \longrightarrow Hom(U,W)[/mm]
> induziert.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo
> Ich hätte eine Verständnisfrage zu obiger Aufgabe.
> Und zwar, was bedeutet überhaupt dieses [mm]f|_U[/mm]? Ich hab
> gehört, das soll die lineare Abbildung sein, die von [mm]f[/mm]
> durch Einschränkung auf [mm]U[/mm] hervorgeht. Nur was bedeutet das
> genau?
Erstmal ganz allgemein: Wenn du eine Funktion $f : X [mm] \to [/mm] Y$ hast zwischen zwei Mengen $X$ und $Y$, und wenn $M [mm] \subseteq [/mm] X$ eine Teilmenge ist, dann ist [mm] $f|_M$ [/mm] die Funktion $M [mm] \to [/mm] Y$ definiert durch $x [mm] \mapsto [/mm] f(x)$.
Du tust also einfach so, als waer die Funktion $f$ nur auf $M$ definiert und nicht auf ganz $X$.
> Vielleicht könnte mir jemand ein Beispiel zeigen?
Nimm $X = [mm] \{ 1, 2 \}$, [/mm] $Y = [mm] \IR$, [/mm] $f : X [mm] \to [/mm] Y$ definiert durch $f(1) = 0$, $f(2) = -1$, und sei $M = [mm] \{ 1 \} \subsetneqq [/mm] X$.
Dann ist [mm] $f|_M [/mm] : M [mm] \to [/mm] Y$ gegeben durch [mm] $(f|_M)(1) [/mm] = 0 = f(1)$, jedoch ist [mm] $(f|_M)(2)$ [/mm] nicht definiert, da $2 [mm] \not\in [/mm] M$ ist.
> Und nochwas: Was ich noch nie so RICHTIG verstanden habe,
> ist, was dieses "induzieren" genau in diesem Zusammenhang
> bedeutet. Bedeutet es, dass die Zuordnung selber schon [mm]R[/mm]
> ist, oder dass aus der Zuordnung folgt, dass es so ein [mm]R[/mm]
> gibt?
Die Zuordnung $f [mm] \mapsto f|_U$ [/mm] ist ja erstmal fuer alle beliebigen Funktionen $f : V [mm] \to [/mm] Y$ mit irgendeiner Zielmenge $Y$ definiert. Du schraenkst sie jetzt aber nur ein auf lineare Abbildungen $V [mm] \to [/mm] W$, also auf die Menge $Hom(V, W)$. Das die Einschraenkung jetzt eine Abbildung $R : Hom(V, W) [mm] \to [/mm] Hom(U, W)$ liefert ist noch nicht klar, da [mm] $f|_U [/mm] : U [mm] \to [/mm] W$ `auf den ersten Blick' nicht nicht linear ist: das musst du noch zeigen! (Mehr aber auch nicht.)
LG Felix
|
|
|
|