www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Eingeschränkte lin. Abb.
Eingeschränkte lin. Abb. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eingeschränkte lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Sa 29.04.2006
Autor: Sly

Aufgabe
Seien [mm]V[/mm] und [mm]W[/mm] K-Vektorräume und sei [mm]U \subset V[/mm] ein Unterraum. Beweisen Sie, dass die Zuordnung [mm]f \longrightarrow f|_U[/mm] eine lineare Abbildung [mm]R : Hom(V,W) \longrightarrow Hom(U,W)[/mm] induziert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo
Ich hätte eine Verständnisfrage zu obiger Aufgabe.
Und zwar, was bedeutet überhaupt dieses [mm]f|_U[/mm]? Ich hab gehört, das soll die lineare Abbildung sein, die von [mm]f[/mm] durch Einschränkung auf [mm]U[/mm] hervorgeht. Nur was bedeutet das genau?
Vielleicht könnte mir jemand ein Beispiel zeigen?

Und nochwas: Was ich noch nie so RICHTIG verstanden habe, ist, was dieses "induzieren" genau in diesem Zusammenhang bedeutet. Bedeutet es, dass die Zuordnung selber schon [mm]R[/mm] ist, oder dass aus der Zuordnung folgt, dass es so ein [mm]R[/mm] gibt?

Ich bitte um Erklärung!
Danke im Voraus

        
Bezug
Eingeschränkte lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 30.04.2006
Autor: felixf

Hallo!

> Seien [mm]V[/mm] und [mm]W[/mm] K-Vektorräume und sei [mm]U \subset V[/mm] ein
> Unterraum. Beweisen Sie, dass die Zuordnung [mm]f \longrightarrow f|_U[/mm]
> eine lineare Abbildung [mm]R : Hom(V,W) \longrightarrow Hom(U,W)[/mm]
> induziert.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo
>  Ich hätte eine Verständnisfrage zu obiger Aufgabe.
>  Und zwar, was bedeutet überhaupt dieses [mm]f|_U[/mm]? Ich hab
> gehört, das soll die lineare Abbildung sein, die von [mm]f[/mm]
> durch Einschränkung auf [mm]U[/mm] hervorgeht. Nur was bedeutet das
> genau?

Erstmal ganz allgemein: Wenn du eine Funktion $f : X [mm] \to [/mm] Y$ hast zwischen zwei Mengen $X$ und $Y$, und wenn $M [mm] \subseteq [/mm] X$ eine Teilmenge ist, dann ist [mm] $f|_M$ [/mm] die Funktion $M [mm] \to [/mm] Y$ definiert durch $x [mm] \mapsto [/mm] f(x)$.

Du tust also einfach so, als waer die Funktion $f$ nur auf $M$ definiert und nicht auf ganz $X$.

>  Vielleicht könnte mir jemand ein Beispiel zeigen?

Nimm $X = [mm] \{ 1, 2 \}$, [/mm] $Y = [mm] \IR$, [/mm] $f : X [mm] \to [/mm] Y$ definiert durch $f(1) = 0$, $f(2) = -1$, und sei $M = [mm] \{ 1 \} \subsetneqq [/mm] X$.

Dann ist [mm] $f|_M [/mm] : M [mm] \to [/mm] Y$ gegeben durch [mm] $(f|_M)(1) [/mm] = 0 = f(1)$, jedoch ist [mm] $(f|_M)(2)$ [/mm] nicht definiert, da $2 [mm] \not\in [/mm] M$ ist.

> Und nochwas: Was ich noch nie so RICHTIG verstanden habe,
> ist, was dieses "induzieren" genau in diesem Zusammenhang
> bedeutet. Bedeutet es, dass die Zuordnung selber schon [mm]R[/mm]
> ist, oder dass aus der Zuordnung folgt, dass es so ein [mm]R[/mm]
> gibt?

Die Zuordnung $f [mm] \mapsto f|_U$ [/mm] ist ja erstmal fuer alle beliebigen Funktionen $f : V [mm] \to [/mm] Y$ mit irgendeiner Zielmenge $Y$ definiert. Du schraenkst sie jetzt aber nur ein auf lineare Abbildungen $V [mm] \to [/mm] W$, also auf die Menge $Hom(V, W)$. Das die Einschraenkung jetzt eine Abbildung $R : Hom(V, W) [mm] \to [/mm] Hom(U, W)$ liefert ist noch nicht klar, da [mm] $f|_U [/mm] : U [mm] \to [/mm] W$ `auf den ersten Blick' nicht nicht linear ist: das musst du noch zeigen! (Mehr aber auch nicht.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de