www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Einheiten - Ring
Einheiten - Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheiten - Ring: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:47 Di 10.07.2012
Autor: AntonK

Aufgabe
[mm] R^x=(a \in [/mm] R, es gibt b [mm] \in [/mm] R mit ab=1)

Hallo Leute,

kurze Frage und zwar steht bei mir im Skript für [mm] R=\IZ [/mm] sind die Einheiten 1 und -1 wegen 1*1=1 und (-1)*(-1)=1.

Nehmen wir mal an [mm] R=\IR [/mm] das hieße doch, dass es unendlich viele Einheiten gibt, da 2*1/2=1, 3*1/3=1... ist oder?

Außerdem steht dort noch:

"Die Einheiten von C sind alle komplexen Zahlen ungleich 0."
Warum gilt dies?

Danke schonmal!

        
Bezug
Einheiten - Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 10.07.2012
Autor: teo


> [mm]R^x=(a \in[/mm] R, es gibt b [mm]\in[/mm] R mit ab=1)
>  Hallo Leute,
>  
> kurze Frage und zwar steht bei mir im Skript für [mm]R=\IZ[/mm]
> sind die Einheiten 1 und -1 wegen 1*1=1 und (-1)*(-1)=1.
>  
> Nehmen wir mal an [mm]R=\IR[/mm] das hieße doch, dass es unendlich
> viele Einheiten gibt, da 2*1/2=1, 3*1/3=1... ist oder?

Ja, [mm] \IR [/mm] ist ja auch ein Körper
  

> Außerdem steht dort noch:
>  
> "Die Einheiten von C sind alle komplexen Zahlen ungleich
> 0."
>   Warum gilt dies?

[mm] \IC [/mm] ist ein Körper

>  
> Danke schonmal!


Bezug
                
Bezug
Einheiten - Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 10.07.2012
Autor: AntonK

Was genau ist der Unterschied zwischen Körper und Ring? Die Axiome für Körper sind mir zwar bekannt, das einzige was da noch einen Unterschied macht, ist die Tatsache, dass ein Körper auch bezüglich der Multiplikation ein Inverses besitzen muss, deswegen gilt dies?

Bezug
                        
Bezug
Einheiten - Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 10.07.2012
Autor: teo


> Was genau ist der Unterschied zwischen Körper und Ring?
> Die Axiome für Körper sind mir zwar bekannt, das einzige
> was da noch einen Unterschied macht, ist die Tatsache, dass
> ein Körper auch bezüglich der Multiplikation ein Inverses
> besitzen muss, deswegen gilt dies?

Ja und jetzt überleg dir was die Existenz eines Inversen bedeutet! Und dann denk nochmal über die Einheiten nach.

Bezug
                                
Bezug
Einheiten - Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Di 10.07.2012
Autor: AntonK

Das ist eigentlich ziemlich logisch, ist ja genau die Definition eines Inversen bezüglich der Multiplikation. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de