www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Einheitskugel, Sphäre, Rand
Einheitskugel, Sphäre, Rand < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitskugel, Sphäre, Rand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 11.03.2015
Autor: sissile

Aufgabe
In [mm] X=\IR^n [/mm] sei [mm] K:=\{x\in \IR^n: ||x|| \le 1\}. [/mm] Dann ist [mm] \partial [/mm] K [mm] =\{x\in \IR^n:||x||=1\}=:S^{n-1}, [/mm] also die (Einheits-)Sphäre.
Ebenso gilt für die offene Kugel [mm] B_1(0)=\{x\in R^n: ||x|| <1}, [/mm] dass [mm] \partial B_1(0)=S^{n-1}. [/mm]

Hallo,

ZZ.: [mm] \partial K=S^{n-1} [/mm]
[mm] \subseteq) [/mm]
x [mm] \in \partial [/mm] K d.h. [mm] \forall\epsilon>0: B_{\epsilon}(x) \cap [/mm] K [mm] \not= \emptyset \wedge B_{\epsilon}(x) \cap (\IR^n\setminus [/mm] K) [mm] \not= \emptyset [/mm]

Angenommen [mm] x\not\in S^{n-1} \Rightarrow [/mm] ||x||>1 [mm] \vee [/mm] ||x||<1

Fall 1: ||x||<1
[mm] \epsilon:= \frac{1-||x||}{2} [/mm]
ZZ.: [mm] B_{\epsilon} [/mm] (x) [mm] \subseteq [/mm] K
y [mm] \in B_{\epsilon} [/mm] (x) d.h. [mm] ||y-x||\le \frac{1-||x||}{2} [/mm]
[mm] ||y||=||y||-||x|+||x||\le 2||y-x||+||x||\le [/mm] 1 [mm] \Rightarrow [/mm] y [mm] \in [/mm] K
Nun haben wir gerade eine Schutzkugel um x gefunden, die ganz in K liegt. Widerspruch zu x Randpunkt.

Fall 2: [mm] ||x||\ge [/mm] 1
[mm] \epsilon:= \frac{||x||-1}{2} [/mm]
ZZ.: [mm] B_{\epsilon} [/mm] (x) [mm] \subseteq \IR^n\setminus [/mm] K
y [mm] \in B_{\epsilon} [/mm] (x) [mm] \Rightarrow ||y-x||\le \frac{||x||-1}{2} [/mm]
Problem 1: Den Beweis krieg ich nicht zu Ende...damit rauskommt ||y|| > 1.

[mm] \supseteq) [/mm]
s [mm] \in S^{n-1}, [/mm] d.h. ||s||=1
ZZ.: [mm] \forall \epsilon>0: B_{\epsilon} [/mm] (s) [mm] \cap [/mm] K [mm] \not= \emptyset \wedge B_{\epsilon}(s) \cap (\IR^n\setminus [/mm] K) [mm] \not= \emptyset [/mm]
Die erste Aussage ist klar da ||s||=1 [mm] \Rightarrow ||s||\le [/mm] 1 [mm] \Rightarrow [/mm] s [mm] \in [/mm] K. Und natürlich ist s selbst in jeder seiner "Schutzkugeln" enthalten.
Nun aber [mm] \IR^n\setminus [/mm] K = [mm] \{x \in \IR^n :||x||>1\} [/mm] und [mm] \epsilon>0 [/mm] beliebig aber fest.
Ich bin auf der Suche nach einen Punkt x, der in jeder Epsilon-Umgebung um s liegt und außerdem im Komplement von K.
Problem 2 Darf ich den Mittelpunkt von K in den Nullpunkt setzen??
Ich schaue mir den Vektor [mm] x=s+\frac{\epsilon}{2} [/mm] * [mm] \frac{s}{||s||}=s+\frac{\epsilon}{2}*s =(\frac{2+ \epsilon}{2})s [/mm] an.
[mm] ||x||=||(\frac{2+ \epsilon}{2})s||=1+\frac{\epsilon}{2} [/mm] >1 [mm] \Rightarrow [/mm] x [mm] \in \IR^n\setminus [/mm] K
Und [mm] ||x-s||=||\frac{\epsilon}{2} [/mm] s|||= [mm] \epsilon/2 [/mm] < [mm] \epsilon \Rightarrow [/mm] x [mm] \in B_\epsilon [/mm] (s)
[mm] \Rightarrow [/mm] x [mm] \in B_\epsilon(s) \cap (\IR^n\setminus [/mm] K) [mm] \Rightarrow B_\epsilon(s) \cap (\IR^n\setminus K)\not= \emptyset [/mm]

LG,
sissi

        
Bezug
Einheitskugel, Sphäre, Rand: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Mi 11.03.2015
Autor: fred97


> In [mm]X=\IR^n[/mm] sei [mm]K:=\{x\in \IR^n: ||x|| \le 1\}.[/mm] Dann ist
> [mm]\partial[/mm] K [mm]=\{x\in \IR^n:||x||=1\}=:S^{n-1},[/mm] also die
> (Einheits-)Sphäre.
>  Ebenso gilt für die offene Kugel [mm]B_1(0)=\{x\in R^n: ||x|| <1},[/mm]
> dass [mm]\partial B_1(0)=S^{n-1}.[/mm]
>  Hallo,
>  
> ZZ.: [mm]\partial K=S^{n-1}[/mm]
>  [mm]\subseteq)[/mm]
>  x [mm]\in \partial[/mm] K d.h. [mm]\forall\epsilon>0: B_{\epsilon}(x) \cap[/mm]
> K [mm]\not= \emptyset \wedge B_{\epsilon}(x) \cap (\IR^n\setminus[/mm]
> K) [mm]\not= \emptyset[/mm]
>  
> Angenommen [mm]x\not\in S^{n-1} \Rightarrow[/mm] ||x||>1 [mm]\vee[/mm]
> ||x||<1
>  
> Fall 1: ||x||<1
>  [mm]\epsilon:= \frac{1-||x||}{2}[/mm]
>  ZZ.: [mm]B_{\epsilon}[/mm] (x)
> [mm]\subseteq[/mm] K
>  y [mm]\in B_{\epsilon}[/mm] (x) d.h. [mm]||y-x||\le \frac{1-||x||}{2}[/mm]
>  
> [mm]||y||=||y||-||x|+||x||\le 2||y-x||+||x||\le[/mm] 1 [mm]\Rightarrow[/mm] y
> [mm]\in[/mm] K
>  Nun haben wir gerade eine Schutzkugel um x gefunden, die
> ganz in K liegt. Widerspruch zu x Randpunkt.
>  
> Fall 2: [mm]||x||\ge[/mm] 1


Du meinst sicher ||x||>1.


>  [mm]\epsilon:= \frac{||x||-1}{2}[/mm]
>  ZZ.: [mm]B_{\epsilon}[/mm] (x)
> [mm]\subseteq \IR^n\setminus[/mm] K
>  y [mm]\in B_{\epsilon}[/mm] (x) [mm]\Rightarrow ||y-x||\le \frac{||x||-1}{2}[/mm]
>  
> Problem 1: Den Beweis krieg ich nicht zu Ende...damit
> rauskommt ||y|| > 1.

Es ist ||x||-||y|| [mm] \le ||x-y||<\bruch{||x||-1}{2} [/mm]

Zeige, dass dann ||y||>1 folgt.


>  
> [mm]\supseteq)[/mm]
>  s [mm]\in S^{n-1},[/mm] d.h. ||s||=1
>  ZZ.: [mm]\forall \epsilon>0: B_{\epsilon}[/mm] (s) [mm]\cap[/mm] K [mm]\not= \emptyset \wedge B_{\epsilon}(s) \cap (\IR^n\setminus[/mm]
> K) [mm]\not= \emptyset[/mm]
>  Die erste Aussage ist klar da ||s||=1
> [mm]\Rightarrow ||s||\le[/mm] 1 [mm]\Rightarrow[/mm] s [mm]\in[/mm] K. Und natürlich
> ist s selbst in jeder seiner "Schutzkugeln" enthalten.
>  Nun aber [mm]\IR^n\setminus[/mm] K = [mm]\{x \in \IR^n :||x||>1\}[/mm] und
> [mm]\epsilon>0[/mm] beliebig aber fest.
>  Ich bin auf der Suche nach einen Punkt x, der in jeder
> Epsilon-Umgebung um s liegt und außerdem im Komplement von
> K.
> Problem 2 Darf ich den Mittelpunkt von K in den Nullpunkt
> setzen??


Hä ???? Der Mittelpunkt von K ist der Nullpunkt !!!

Noch eine Frage: wo kommt der Begriff Schutzkugel her ? Seit Jahrthunderten bin ich in der Mathematik untewrwegs, aber das habe ich noch nie gehört/gesehen / gelesen.


FRED


>  Ich schaue mir den Vektor [mm]x=s+\frac{\epsilon}{2}[/mm] *
> [mm]\frac{s}{||s||}=s+\frac{\epsilon}{2}*s =(\frac{2+ \epsilon}{2})s[/mm]
> an.
>  [mm]||x||=||(\frac{2+ \epsilon}{2})s||=1+\frac{\epsilon}{2}[/mm] >1
> [mm]\Rightarrow[/mm] x [mm]\in \IR^n\setminus[/mm] K
>  Und [mm]||x-s||=||\frac{\epsilon}{2}[/mm] s|||= [mm]\epsilon/2[/mm] <
> [mm]\epsilon \Rightarrow[/mm] x [mm]\in B_\epsilon[/mm] (s)
>  [mm]\Rightarrow[/mm] x [mm]\in B_\epsilon(s) \cap (\IR^n\setminus[/mm] K)
> [mm]\Rightarrow B_\epsilon(s) \cap (\IR^n\setminus K)\not= \emptyset[/mm]
>  
> LG,
>  sissi


Bezug
                
Bezug
Einheitskugel, Sphäre, Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Mi 11.03.2015
Autor: sissile

Danke für den Hinweis bzgl. Fall 2, konnte diesen so zu Ende bringen.
Bezüglich der Rückrichtung hab ich da etwas verwechselt.

Schutzkugel tauchte im Skript von meinen Professor in Anführungszeichen als Motivation in der Einleitung auf. Als sozusage "naive Vorstellung" zu sehen.

LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de