www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Einheitsmatrix - als einzigs sym. / ortho. / pos. definit
Einheitsmatrix - als einzigs sym. / ortho. / pos. definit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitsmatrix - als einzigs sym. / ortho. / pos. definit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 08.05.2004
Autor: rossi

Frisch angemeldet und gleich des erste Problem :-)

Die Einheitsmatrix ist die einzige Matrix, die symmetrisch, positiv definit und orthogonal zugleich ist - aber wie zeig ich es!
Habs mit Widerspruch versucht, aber so richtig komm ich nicht weiter....

Jemand nen schönen Vorschlag?!

        
Bezug
Einheitsmatrix - als einzigs sym. / ortho. / pos. definit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:41 So 09.05.2004
Autor: Marc

Hallo rossi,

willkommen im MatheRaum :-)!

> Die Einheitsmatrix ist die einzige Matrix, die symmetrisch,
> positiv definit und orthogonal zugleich ist - aber wie zeig
> ich es!
> Habs mit Widerspruch versucht, aber so richtig komm ich
> nicht weiter....
>
> Jemand nen schönen Vorschlag?!

Schau'n wir mal:

Sei $A$ symmetrisch  [mm] $\Rightarrow$ [/mm] Es existiert $T$, so dass [mm] $T^{-1}AT=\begin{pmatrix} \lambda_1 & & 0\\ & \ddots & \\ 0& & \lambda_n \end{pmatrix}$, [/mm] wobei [mm] $\lambda_i$ [/mm] die Eigenwerte sind.
(Das solltest du nochmal nachprüfen, ich bin mir da nicht sicher.)


Die inverse Matrix zu [mm] $T^{-1}AT$ [/mm] lautet [mm] $(T^{-1}AT)^{-1}=T^{-1}A^{-1}T=\begin{pmatrix} \bruch{1}{\lambda_1} & & 0\\ & \ddots & \\ 0& & \bruch{1}{\lambda_n} \end{pmatrix}$ [/mm]

Da $A$ orthogonal ist, gilt: [mm] $A^{-1}=A^T$, [/mm] wegen der Symmetrie [mm] $A^T=A$ [/mm] also [mm] $A^{-1}=A$; [/mm] damit ergibt sich folgende Gleichungskette:

[mm] $\begin{pmatrix} \lambda_1 & & 0\\ & \ddots & \\ 0& & \lambda_n \end{pmatrix}=T^{-1}AT=T^{-1}\underbrace{A^{-1}}_{=A}T=(T^{-1}AT)^{-1}=\begin{pmatrix} \bruch{1}{\lambda_1} & & 0\\ & \ddots & \\ 0& & \bruch{1}{\lambda_n} \end{pmatrix}$ [/mm]

und durch Vergleich der Einträge:

[mm] $\lambda_1=\bruch{1}{\lambda_1}$ [/mm]
[mm] $\vdots$ [/mm]
[mm] $\lambda_n=\bruch{1}{\lambda_n}$ [/mm]

also

[mm] $\lambda_1^2=1$ [/mm]
[mm] $\vdots$ [/mm]
[mm] $\lambda_n^2=1$ [/mm]

Zum Glück ist $A$ positiv definit, und deswegen die Eigenwerte [mm] $\lambda_i$ [/mm] positiv [mm] ($\lambda_i>0$); [/mm] es folgt: [mm] $\lambda_1=\ldots=\lambda_n=1$. [/mm]

Die erste Gleichung ganz oben wird somit zu:

[mm] $T^{-1}AT=\begin{pmatrix} 1 & & 0\\ & \ddots & \\ 0& & 1 \end{pmatrix}$ [/mm]

[mm] $\Rightarrow$ $TT^{-1}AT=TE_n$ [/mm]

[mm] $\Rightarrow$ [/mm] $E_nAT=T$

[mm] $\Rightarrow$ $ATT^{-1}=TT^{-1}$ [/mm]
[mm] $\Rightarrow$ $A=E_n$ $\Box$ [/mm]

So, ich hoffe, da ist kein Fehler drin, im Laufe des Tages wird das hier aber bestimmt noch mal korrekturgelesen werden.

Viele Grüße,
Marc

Bezug
                
Bezug
Einheitsmatrix - als einzigs sym. / ortho. / pos. definit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 So 09.05.2004
Autor: rossi

Hi Marc....

danke für die Antwort - aber ich denk so leicht geht des net!
Weil

Es existiert , [mm] T [/mm] so dass [mm] T^{-1}AT=\begin{pmatrix} \lambda_1 & & 0\\ & \ddots & \\ 0& & \lambda_n \end{pmatrix} [/mm]

muss lauten [mm] T^{T}AT=\begin{pmatrix} \lambda_1 & & 0\\ & \ddots & \\ 0& & \lambda_n \end{pmatrix} [/mm]

und damit kommst du dann unten nicht auf die Einheitsmatrix!!!

Gruß
Rossi

Bezug
                        
Bezug
Einheitsmatrix - als einzigs sym. / ortho. / pos. definit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 09.05.2004
Autor: Stefan

Hallo Rossi,

> danke für die Antwort - aber ich denk so leicht geht des
> net!

Doch. :-)

>  Weil
>  
> Es existiert , [mm]T[/mm] so dass [mm]T^{-1}AT=\begin{pmatrix} \lambda_1 & & 0\\ & \ddots & \\ 0& & \lambda_n \end{pmatrix}[/mm]
>  
>
> muss lauten [mm]T^{T}AT=\begin{pmatrix} \lambda_1 & & 0\\ & \ddots & \\ 0& & \lambda_n \end{pmatrix}[/mm]

Da aber [mm]T[/mm] orthogonal gewählt werden kann, gilt: [mm]T^T=T^{-1}[/mm] und alles geht so, wie beschrieben.

Viele Grüße
Stefan  


Bezug
                                
Bezug
Einheitsmatrix - als einzigs sym. / ortho. / pos. definit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 So 09.05.2004
Autor: rossi

Mmm ok - was ich wie man so frei wählen kann, des hab ich noch net so drauf - DANKE!!!

Rossi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de