www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Einheitsvektor
Einheitsvektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitsvektor: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:05 Fr 03.11.2006
Autor: Nicole1989

Hallo Leute

Kann mir jemand bei dieser Aufgabe helfen?

Berechnen Sie alle Punkte auf der Geraden AB, die 8 cm von A entfernt sind.

A (2/10) und B (22/-6), ex = ey = 1 cm...

Vielen Dank. Lg Nicole

        
Bezug
Einheitsvektor: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 11:27 Fr 03.11.2006
Autor: Herby

Hallo Nicole,


stell dir den Ablauf einmal bildlich vor:


du stehst auf dem Punkt O=(0|0) im Ursprung und musst erst einmal zum Punkt A. Dahin führt dein Vektor


[mm] \overrightarrow{OA}=\vektor{2 \\ 10} [/mm]



nun musst du noch in Richtung Punkt B laufen - das geht über den Richtungsvektor



[mm] \overrightarrow{AB}=\vektor{22-2 \\ -6-10}=\vektor{20 \\ -16} [/mm]




wie weit, das sagt dir der Faktor [mm] \lambda [/mm] in unserem Fall [mm] \lambda=8 [/mm] (ohne Maßeinheit)



Du erreichst also deinen Punkt x:


[mm] \vec{x}=\overrightarrow{OA}+\lambda*\overrightarrow{AB} [/mm]



[mm] \vec{x}=\vektor{2 \\ 10}+8*\vektor{20 \\ -16}=\vektor{162 \\ 118} [/mm]


Liebe Grüße
Herby


Bezug
                
Bezug
Einheitsvektor: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 14:44 Fr 03.11.2006
Autor: Gonozal_IX

Die Länge eines Vektors bestimmt sich nicht über das [mm] \lambda [/mm] sondern über den Betrag des Vektors.

Gruß,
Gono.

Bezug
                        
Bezug
Einheitsvektor: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 00:14 Sa 04.11.2006
Autor: Herby

Moin Gonozal,


das war natürlich nur vom Schreibtisch bis zur Tür gedacht von mir heute mittag [peinlich] - wenn überhaupt :-)


Da passt dann wieder:


[mm] \red{ACHTUNG}[/mm]   [Dateianhang nicht öffentlich]


Liebe Grüße
Herby

Bezug
        
Bezug
Einheitsvektor: upps, schon wieder..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Fr 03.11.2006
Autor: Herby

man, wieder gesendet, anstatt Vorschau [kopfschuettel]



es fehlt noch das [mm] \red{-}\lambda, [/mm] denn du kannst ja in beide Richtungen wandern tun :-)




Liebe Grüße
Herby

Bezug
                
Bezug
Einheitsvektor: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:57 Fr 03.11.2006
Autor: Nicole1989

Hey Danke vielmal...habe ich alles so weit verstanden...nur habe ich bei der Lösung ...Zahlen wie

1. Punkt (2+40/Wurzel41 | 10-32/Wurzel41)

Wie kommen die denn auf diese Wurzeln?:S

Lg Nicole

Bezug
                        
Bezug
Einheitsvektor: naja, öhm, mmmmh, pffft
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Fr 03.11.2006
Autor: Herby

Hallo Nicole,



> Hey Danke vielmal...habe ich alles so weit verstanden...nur
> habe ich bei der Lösung ...Zahlen wie
>
> 1. Punkt (2+40/Wurzel41 | 10-32/Wurzel41)
>  
> Wie kommen die denn auf diese Wurzeln?:S
>  
> Lg Nicole


dazu kann ich nur sagen: [mm] \text{\green{ich hab keine Ahnung}} [/mm] [keineahnung]


Vielleicht weiß ja ein anderes Mitglied mehr als wir beide - könnte doch sein ;-)



Liebe Grüße
Herby

Bezug
                        
Bezug
Einheitsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Fr 03.11.2006
Autor: Gonozal_IX

Hiho,

also irgendwie stimmt Herbys antwort nicht so ganz....

dann wollen wir mal:

Wie Herby schon gezeigt hat, ist die Geradengleichung:

[mm] \vec{x} [/mm] = [mm] \vektor{2 \\ 10} [/mm] + [mm] \lambda\vektor{20 \\ -16} [/mm]

Jetzt willst du alle Punkte auf der Geraden, deren Abstand von A 8cm sind, d.h. wie gross muss [mm] \lambda [/mm] sein, damit der Richtungsvektor die Länge (=den Betrag) 8 hat:

[mm]|\lambda\vektor{20 \\ -16}|[/mm] = [mm] |\lambda|*|\vektor{20 \\ -16}| [/mm] = [mm] |\lambda|\sqrt{20^2 + (-16)^2} [/mm] = [mm] |\lambda|\sqrt{656} [/mm] = [mm] |\lambda|*4*\sqrt{41}[/mm] [/mm]

Und das ganze soll 8 sein:

[mm]|\lambda|*4*\sqrt{41} = 8 [/mm]

[mm]\gdw |\lambda| = \bruch{2}{\sqrt{41}}[/mm]

[mm]\gdw \lambda = \bruch{2}{\sqrt{41}}[/mm] oder [mm]\lambda = -\bruch{2}{\sqrt{41}}[/mm]


Also hast du deine beiden Punkte auf der Geraden, die von A genau 8cm entfernt sind:

[mm] \vec{x_1} [/mm] = [mm] \vektor{2 \\ 10} [/mm] + [mm] \bruch{2}{\sqrt{41}}\vektor{20 \\ -16} [/mm]

[mm] \vec{x_2} [/mm] = [mm] \vektor{2 \\ 10} [/mm] - [mm] \bruch{2}{\sqrt{41}}\vektor{20 \\ -16} [/mm]

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de