www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Einheitsvektoren, Nullvektor..
Einheitsvektoren, Nullvektor.. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitsvektoren, Nullvektor..: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:25 Mo 07.07.2008
Autor: Tully

Aufgabe
F: [mm] \IR³ \to \IR³ [/mm] mit [mm] F(\vec{x} [/mm] :=  A * [mm] \vec{x} [/mm] + [mm] \vec{b} [/mm] und

[mm] \pmat{ -1 & 0 & 0 \\ 0 & 0 & 1\\ 0 & 1 & 0} [/mm] und [mm] \vec{b} [/mm] = [mm] \pmat{1 \\ 0 \\ 0} [/mm]

wird eine Abbildung  vom Anschauuungsraum [mm] \IR³ [/mm] in sich beschrieben.

1. Auf welche Vektoren werden die Einheitsvektoren [mm] \vec{e1}, \vec{e2} [/mm] und [mm] \vec{e3} [/mm] abgebildet?

2. Welcher Vektor wird auf den Nullvektor abgebildet?

3. Bestimmen Sie die inverse Matrix zu A. Interpretieren sie das ergebnis.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Ich habe Probleme bei Punk 1. und Punkt 2. Kann mir jemand evt. kurz erläutern, wie man bei diesen Aufgaben prizipiell vorgeht?

Zu Aufgabe 3. Die inverse Matrix entsprich ja der Ausgangsmatrix. Wie kann man dies Interpretieren? Also was bedeutet es allgemein, wenn die Ausgangsmatrix der Inversen entspricht?

Vielen Dank für Eure Hilfe!! :)

Tully

        
Bezug
Einheitsvektoren, Nullvektor..: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Mo 07.07.2008
Autor: koepper

Hallo Tully,

zu 1.) setze die 3 Einheitsvektoren einfach für x in die Funktion ein und rechne aus.

zu 2.) setze den Nullvektor für F(x) ein und löse nach x auf.

zu 3.) z.B. könnte man sagen, daß ein Vektor, der zweimal hintereinander (nur!) mit der Matrix abgebildet wird, wieder auf sich selbst fällt. Der Verschiebungsvektor sorgt hier aber für Störung. Die Matrix ist weiterhin orthogonal.
Versuche vielleicht auch, die Abbildung geometrisch zu interpretieren.

LG
Will


Bezug
                
Bezug
Einheitsvektoren, Nullvektor..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Mo 07.07.2008
Autor: Tully

Danke.
Also theoretisch so:

1.
[mm] \vec{e1} [/mm] = [mm] \pmat{1 \\ 0 \\ 0} [/mm]

[mm] \pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 } [/mm] * [mm] \pmat{ 1 \\ 0 \\ 0} [/mm] + [mm] \pmat{1 \\ 0 \\ 0} [/mm] = [mm] \pmat{ 0 \\ 0 \\ 0} [/mm] ?


[mm] \vec{e2} [/mm] = [mm] \pmat{0 \\ 1 \\ 0} [/mm]

[mm] \pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 } [/mm] * [mm] \pmat{ 0 \\ 1 \\ 0} [/mm] + [mm] \pmat{1 \\ 0 \\ 0} [/mm] = [mm] \pmat{ 1 \\ 1 \\ 0} [/mm] ?

usw.

Ist dies korrekt?

Guter Tipp mit der geometrischen Betrachtung. Hat mir geholfen! :)

Bezug
                        
Bezug
Einheitsvektoren, Nullvektor..: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 07.07.2008
Autor: schachuzipus

Hallo Tully,

> Danke.
> Also theoretisch so:
>  
> 1.
>  [mm]\vec{e1}[/mm] = [mm]\pmat{1 \\ 0 \\ 0}[/mm]
>  
> [mm]\pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 }[/mm] * [mm]\pmat{ 1 \\ 0 \\ 0}[/mm] + [mm]\pmat{1 \\ 0 \\ 0}[/mm] = [mm]\pmat{ 0 \\ 0 \\ 0}[/mm] ? [ok]
>
>
> [mm]\vec{e2}[/mm] = [mm]\pmat{0 \\ 1 \\ 0}[/mm]
>  
> [mm]\pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 }[/mm] * [mm]\pmat{ 0 \\ 1 \\ 0}[/mm] + [mm]\pmat{1 \\ 0 \\ 0}[/mm] = [mm]\pmat{ 1 \\ 1 \\ 0}[/mm] ? [notok]

Da haste dich verrechnet (oder eher verschrieben), es ist doch [mm] $A\cdot{}e_2=\vektor{0\\0\\1}$, [/mm] also ...

>
> usw.
>  
> Ist dies korrekt?

>  
> Guter Tipp mit der geometrischen Betrachtung. Hat mir
> geholfen! :)

LG

schachuzipus


Bezug
                                
Bezug
Einheitsvektoren, Nullvektor..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Mo 07.07.2008
Autor: Tully

mh? der rechenweg sie doch wie folgt aus:

[mm] \pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 } [/mm]  * [mm] \pmat{ 0 \\ 1 \\ 0} [/mm]  = [mm] \pmat{0 \\ 1 \\ 0} [/mm] und das dann +  [mm] \pmat{1 \\ 0 \\ 0} [/mm]  =  [mm] \pmat{ 1 \\ 1 \\ 0} [/mm] ?

Bezug
                                        
Bezug
Einheitsvektoren, Nullvektor..: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Mo 07.07.2008
Autor: schachuzipus

Hi,

> mh? der rechenweg sie doch wie folgt aus:
>  
> [mm]\pmat{ -1 & 0 & 0 \\0 & 0 & 1\\ 0 & 1 & 0 }[/mm]  * [mm]\pmat{ 0 \\ 1 \\ 0}[/mm]  = [mm]\pmat{0 \\ 1 \\ 0}[/mm] [notok]

M.E. kommt da [mm] $\vektor{0\\0\\1}$ [/mm] raus

> und das dann +  [mm]\pmat{1 \\ 0 \\ 0}[/mm]  =
>  [mm]\pmat{ 1 \\ 1 \\ 0}[/mm] ?


Das Vorgehen ist ja richtig, aber ich meine, das erste Produkt stimmt bei dir nicht


LG

schachuzipus

Bezug
                                        
Bezug
Einheitsvektoren, Nullvektor..: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:09 Di 08.07.2008
Autor: Tully

Oh je, ja, natürlich! Danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de