www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Elastizität / delta-Zeichen
Elastizität / delta-Zeichen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elastizität / delta-Zeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Do 21.01.2016
Autor: Mathics

Aufgabe
Die Elastizität einer Funktion y =y(x) ist definiert als

[mm] \varepsilon [/mm] = [mm] \bruch{\bruch{dy}{y}}{\bruch{dx}{x}} [/mm]

bzw.

[mm] \varepsilon [/mm] = [mm] \bruch{dy}{dx} \bruch{x}{y} [/mm]

Zeigen Sie, dass gilt

[mm] \varepsilon [/mm] = [mm] \bruch{dlny}{dlnx} [/mm]

Hallo,

die Lösung lautet:

[mm] \varepsilon [/mm] = [mm] \bruch{dlny}{dlnx} [/mm] = [mm] \bruch{\bruch{1}{y}dy}{\bruch{1}{x}dx} [/mm] = [mm] \varepsilon [/mm] = [mm] \bruch{dy}{dx} \bruch{x}{y} [/mm]

Bei der ersten Umformug hat man anscheinend lny und lnx abgeleitet, aber wieso schreibt man dann dahinter jeweils dy und dx? Was hat dlny und dlmx davor ausgesagt? Was ist also genau die Rolle von diesem d? Und worin besteht der Unterschied zu [mm] \partial? [/mm]


Danke!

LG
Mathics

        
Bezug
Elastizität / delta-Zeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 21.01.2016
Autor: huddel

Hallo Mathics,

ich stelle die Frage mal zurück: was ist denn mit $dx$ überhaup gemeint? Ich kenne nun die genauen Physikalischen Hintergründe nicht, aber vom Mathematischen Standpunkt ist das das totale Differentiel einer Differntialform. In unserm Fall sind unsere Differentialformen gegeben durch $d(ln(x))$ bzw. $d(ln(y))$ und $dx$ bzw. $dy$. Ich verweise dich hierbei mal auf das Skript welches ich sehr hilfreich fand: []Analysis-Skript

damit wird das totale Differential einer differenzierbaren Funktion zu einer 1-Form. Nemen wir die Funktion $f(x) = ln(x)$, dann wird

[mm] $df(x)=\frac{\partial f}{\partial x}(x) [/mm] dx = [mm] \frac{\partial ln}{\partial x}(x) [/mm] dx = [mm] \frac{1}{x}dx$ [/mm]

Die genauen Hintergründe kannst du dir in besagtem Skript mal durchlesen und bei Fragen dich gerne nochmal melden :)

Viele Grüße,
Huddel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de