www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Elementarmatrizen
Elementarmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elementarmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 03.12.2012
Autor: unibasel

Aufgabe
Beweise, dass jede Matrix in [mm] GL_{2}(K) [/mm] Produkt von höchstens vier Elementarmatrizen ist.

Das war eigentlich Thema des ersten Semesters, bin aber nun schon weiter und wiederhole einfach noch solch "einfache" Sachen.

Nun habe ich aber völlig vergessen, wie ich so was beweisen muss...

Mein Ansatz:
Dem Artin entnehme ich: [mm] \exists [/mm] Elementarmatrizen des folgenden Typs:
i. [mm] \pmat{ 1 & a \\ 0 & 1 }, \pmat{ 1 & 0 \\ a & 1 } [/mm]
ii. [mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm]
iii. [mm] \pmat{ c & 0 \\ 0 & 1 }, \pmat{ 1 & 0 \\ 0 & c } [/mm]

mit a beliebig und c auch ungleich 0.

Ich nehme an mit Hilfe von Gauss auf Zeilenstufenform bringen und aufschreiben, welche Zeilenstufenoperationen durchgeführt worden sind => diese multiplizieren...

Aber da ich ja eine allgemeine Matrix A [mm] \in GL_{2}(K) [/mm] habe, stelle ich das wie genau an?
Wäre toll, wenn mir da jemand helfen könnte, das ist schon länger her, das Thema.

mfg :)

        
Bezug
Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Mo 03.12.2012
Autor: unibasel

Hmm ist das so schwierig?

Bezug
        
Bezug
Elementarmatrizen: Gauß
Status: (Antwort) fertig Status 
Datum: 19:50 Mo 03.12.2012
Autor: Schadowmaster

moin,

Du kennst doch sicher den Gaußalgorithmus?
Jeder Schritt, den du da machst, kann als Multiplikation mit einer Elementarmatrix realisiert werden. Das heißt du musst zeigen, dass du deine gegebenen Matrizen in höchstens vier Gaußschritten in die Einheitsmatrix überführen kannst.


lg

Schadow

Bezug
                
Bezug
Elementarmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Mo 03.12.2012
Autor: unibasel

Ohhh mein Gott, ja wie simpeeeel! Natürlich kenn ich Gauss (habe ich ja auch schon geschrieben).
Dein zweiter Satz half mir natürlich enorm :D
Danke vielmals. Jetzt fällts mir wieder ein.

LG :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de