www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Elemente von L/F
Elemente von L/F < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente von L/F: Frage
Status: (Frage) beantwortet Status 
Datum: 11:21 Mi 15.06.2005
Autor: anitram

Hallo!

Vielleicht kann mir ja jemand von euch helfen!
wieviele elemente hat  [mm] \IZ[i]/(2+i)? [/mm]
ich weiss zwar wieviele elemente z.b.  [mm] \IZ/5 [/mm] hat, aber bei diesem beispiel hab ich echt keine ahnung, wie man das angeht!

danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Elemente von L/F: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Do 16.06.2005
Autor: qwert


> Hallo!
>  
> Vielleicht kann mir ja jemand von euch helfen!
>  wieviele elemente hat  [mm]\IZ[i]/(2+i)?[/mm][/i][/mm]
> [mm][i] ich weiss zwar wieviele elemente z.b. [mm]\IZ/5[/mm] hat, aber bei [/i][/mm]
> [mm][i]diesem beispiel hab ich echt keine ahnung, wie man das [/i][/mm]

zunächst einmal gilt (5) [mm] \subset [/mm] (2+i)

damit erhält man einen Isomorphismus [mm] \IZ[i] [/mm] /(2+i) <-- [mm] (\IZ[i]/(5))/((2+i)/(5)). [/mm]

Also muss die Anzahl der Elemente von [mm] \IZ[i]/(2+i) [/mm] die Anzahl der Elemente von [mm] \IZ[i]/(5) [/mm] teilen. Und da gibt es nicht so viele Möglichkeiten.

qwert

Bezug
                
Bezug
Elemente von L/F: Rueckfrage/Idee
Status: (Frage) beantwortet Status 
Datum: 13:20 Mo 20.06.2005
Autor: anitram

zuerst einmal danke fuer deine antwort!

ich habe mir jetzt folgendes gedacht:
[mm] \IZ[i]/(2+i) [/mm]  muesste isomorph zu  [mm] \IZ[5] [/mm] sein, stimmt das?
also haetten beide 5 elemente?
noch einmal danke!

Bezug
                        
Bezug
Elemente von L/F: /i bzw [i]
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Mo 20.06.2005
Autor: Hexe

Also wie ist genau deine Bezeichnung gemeint?? Seh ich das richtig dass
[mm] \IZ[i] [/mm] alle vielfachen von i enthält
[mm] \IZ/i [/mm]  die [mm] \IZ-gruppe [/mm] modulo i ist oder ist es umgekehrt?? und was ist i? die wurzel aus -1 oder eine beliebige zahl aus [mm] \IN [/mm]

Bezug
                                
Bezug
Elemente von L/F: erklaerung/frage
Status: (Frage) für Interessierte Status 
Datum: 10:42 Di 21.06.2005
Autor: anitram

gemeint ist schon   [mm] \IZ[i], [/mm] und auch ist i die wurzel aus -1.
stimmts dann so wie ich in meinem 2. artikel gesagt habe?

danke!!!


Bezug
                                        
Bezug
Elemente von L/F: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Fr 24.06.2005
Autor: matux

Hallo anitram!

Zunächst einmal [willkommenmr] !


Leider konnte Dir keiner hier mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de