www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ellipse und Hauptachsentransf.
Ellipse und Hauptachsentransf. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ellipse und Hauptachsentransf.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:17 Fr 28.07.2006
Autor: MasterEd

Aufgabe
Es sei E eine Ellipse mit den Hauptachsen [mm] $w_1=\bruch{1}{\wurzel{13}}\vektor{2\\3}$ [/mm] und [mm] $w_2=\bruch{1}{\wurzel{13}}\vektor{-3\\2}$ [/mm] und den zugehörigen Hauptachsenabschnitten 3 und 1. Man bestimme die zu E gehörende  Gleichung
[mm] $$a_{11}x_1^2+2a_{12}x_1x_2+a_{22}x_2^2-1=0,$$ [/mm]
in der [mm] $a_{12}\not=0$ [/mm] ist.

Hallo Leute,

Hauptachsentransformation ansich ist ja kein Problem. Aber jetzt muss ich ja erst die Gleichung bestimmen, bevor ich sie dann transformieren kann. Wie mache ich das mit den obigen Angaben?

Vielen Dank!

(Ich habe diese Frage nirgends sonst gestellt.)

        
Bezug
Ellipse und Hauptachsentransf.: Schnellschuß
Status: (Antwort) fertig Status 
Datum: 15:34 Fr 28.07.2006
Autor: statler

Hallo,

so herum habe ich das auch noch nie gemacht.

Man kann doch sofort aus den gegebenen Daten die Koordinaten eines Haupt- und eines Nebenscheitels ausrechnen. Für diese Punkte muß dann die allgemeine Gleichung gelten, also kriege ich 2 Gleichungen. Leider habe ich 3 Unbekannte, da muß ich nochmal kurz nachdenken, vllt kriegen wir das noch vor Feierabend hin, oder jd. anders hilft mit, ich lasse die Frage auf teilbeantwortet.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Ellipse und Hauptachsentransf.: Verbesserung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Fr 28.07.2006
Autor: statler

Hallo,

ich glaube, es ist besser mit der ungedrehten Ell. anzufangen:

[mm] \bruch{x^{2}}{9} [/mm] +  [mm] \bruch{y^{2}}{1} [/mm] = 1

Jetzt kann man aber aus den Angaben in der Aufg. den Drehwinkel [mm] \phi [/mm] ausrechnen, es ist nämlich tan [mm] \phi [/mm] = 1,5

Und du hast geschrieben, daß du Koordinatentransformationen kannst, also müßtest du jetzt die Originalellipse um diesen Winkel [mm] \phi [/mm] drehen,
und dann solltest du die [mm] a_{ij} [/mm] ablesen können.

Ich denke, ich mach jetzt gleich Feierabend.
Dieter


Bezug
        
Bezug
Ellipse und Hauptachsentransf.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 30.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de