www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Endliche Gruppen
Endliche Gruppen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:35 So 16.11.2008
Autor: Nadja1989

Aufgabe
Bereits bekannt sind die Gruppen G1= [mm] \IZ/4\IZ [/mm] und das direkte Produkt G2= [mm] \IZ/2\IZ [/mm] x [mm] \IZ/2\IZ. [/mm]
Zeigen Sie mit Hilfe von Verknüpfungstafeln der Form (e, a, b, c) dass G1 und G2 die einzigen endlichen Gruppen mit vier Elementen sind (bis auf Umbenennung der Elemente). Hierbei bzeichne e stets das neutrale Element.
Verwenden Sie, dass in der VErknüpfungstafel einer endlichen Gruppe jedes Element in jeder Zeile und Spalte genau einmal vorkommt (Können Sie dies begründen?).  

Hallo zusammen!

Ich hab jetzt die VErknüpfungstafeln mal aufgestellt. KLar ist dass die erste Spalte und Zeile genau bestimmt ist (bei beiden gleich), weil e ja das neutrale Element ist.
Aber dann hängts schon bei mir. Ich hab keine ahnung wie ich das begründen soll,.
Hat jemand nen Tipp für mich?

lg
Nadja

        
Bezug
Endliche Gruppen: Sudoku
Status: (Antwort) fertig Status 
Datum: 12:05 Mo 17.11.2008
Autor: Gnometech

Hallo!

Hast Du schon mal ein Sudoku gemacht? Das hier geht genauso, abgesehen davon, dass es eben nicht (wie bei einem Sudoku) nur eine Lösung gibt. hier sollst Du alle möglichen Lösungen finden.

Die wichtigste Regel steht ja schon beschrieben: Jedes Symbol darf in jeder Zeile und jeder Spalte nur einmal auftauchen. Jetzt kannst Du Dir ein freies Feld nehmen, z.B. das Feld, welches das Element $a [mm] \cdot [/mm] b$ bezeichnet und Möglichkeiten durchspielen.

Fall 1: $ab = e$. In diesem Fall kann die Verknüpfungstafel nur auf eine Art zu Ende ausgefüllt werden. Kannst du das nachweisen? Und welche Gruppe kommt heraus?

Fall 2: $ab = c$. Hier gibt es wieder zwei Möglichkeiten, entweder $ac = e$ und $ac = b$. In beiden Fällen ergibt sich eine eindeutige Tafel.

Nun hast Du 3 Tafeln und mehr Möglichkeiten gibt es nicht, weil Du alle Annahmen durchgespielt hast. Schau dann scharf hin und begründe, warum zwei der drei Tafeln doch gleich (bzw. isomorph) sind...

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de