www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Endliche Körper
Endliche Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 02.09.2010
Autor: Lippel

Aufgabe
Es sei [mm] $\IF$ [/mm] ein endlicher Körper der Charakteristik $p$, wobei $p$ den Kern des kanonischen Ringhomomorphismus [mm] $\IZ \to \IF$ [/mm] erzeugt. Man zeige:
(i) p ist eine Primzahl
(ii) Es besteht [mm] $\IF$ [/mm] aus [mm] $p^r$ [/mm] Elementen, wobei r eine geeignete natürliche Zahl ist.

Hallo,

ich denke zu (i) habe ich eine Lösung, die allerdings der Verifikation bedarf, bin mir nicht ganz sicher. In Teil (ii) hänge ich.

(i) Angenommen p nicht prim [mm] $\Rightarrow$ [/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab [/mm] mit [mm]a \not= 0, b\not= 0 \Rightarrow \IF[/mm] nicht nullteilerfrei [mm] $\Rightarrow \IF$ [/mm] kein Körper

(ii) Die Aussage erscheint mir logisch. Ich finde aber keinen Ansatz zu einem Beweis. Ich weiß, dass [mm] §\IF$ [/mm] auf jeden Fall einen zu [mm] $\IZ/p\IZ$ [/mm] isomorphen Teilkörper enthält. Komme ich damit weiter?

Vielen Dank für die Hilfe.

Viele Grüße, Lippel

        
Bezug
Endliche Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 02.09.2010
Autor: felixf

Moin Lippel,

> Es sei [mm]\IF[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm],
> wobei [mm]p[/mm] den Kern des kanonischen Ringhomomorphismus [mm]\IZ \to \IF[/mm]
> erzeugt. Man zeige:
>  (i) p ist eine Primzahl
>  (ii) Es besteht [mm]\IF[/mm] aus [mm]p^r[/mm] Elementen, wobei r eine
> geeignete natürliche Zahl ist.
>  
> ich denke zu (i) habe ich eine Lösung, die allerdings der
> Verifikation bedarf, bin mir nicht ganz sicher. In Teil
> (ii) hänge ich.
>  
> (i) Angenommen p nicht prim [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab[/mm]

Was bedeutet Teilbarkeit in [mm] $\IF$? [/mm] Du solltest $a, b [mm] \in \IZ$ [/mm] waehlen, und dann ihr Bild in [mm] $\IF$ [/mm] betrachten.

> mit [mm]a \not= 0, b\not= 0 \Rightarrow \IF[/mm] nicht
> nullteilerfrei [mm]\Rightarrow \IF[/mm] kein Körper

Vom Prinzip her richtig.

> (ii) Die Aussage erscheint mir logisch. Ich finde aber
> keinen Ansatz zu einem Beweis. Ich weiß, dass [mm]§\IF$[/mm] auf
> jeden Fall einen zu [mm]\IZ/p\IZ[/mm][/mm] isomorphen Teilkörper
> enthält. Komme ich damit weiter?

Ueberleg dir, dass [mm] $\IF$ [/mm] ein Vektorraum ueber diesem Teilkoerper ist.

LG Felix



Bezug
                
Bezug
Endliche Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Do 02.09.2010
Autor: Lippel

Hallo Felix, vielen Dank für deine Antwort (mal wieder ;-) )

> > Es sei [mm]\IF[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm],
> > wobei [mm]p[/mm] den Kern des kanonischen Ringhomomorphismus [mm]\IZ \to \IF[/mm]
> > erzeugt. Man zeige:
>  >  (i) p ist eine Primzahl
>  >  (ii) Es besteht [mm]\IF[/mm] aus [mm]p^r[/mm] Elementen, wobei r eine
> > geeignete natürliche Zahl ist.
>  >  
> > ich denke zu (i) habe ich eine Lösung, die allerdings der
> > Verifikation bedarf, bin mir nicht ganz sicher. In Teil
> > (ii) hänge ich.
>  >  
> > (i) Angenommen p nicht prim [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab[/mm]
>  
> Was bedeutet Teilbarkeit in [mm]\IF[/mm]? Du solltest [mm]a, b \in \IZ[/mm]
> waehlen, und dann ihr Bild in [mm]\IF[/mm] betrachten.
>  

Nochmal: [mm] $\phi$ [/mm] beizeichne den kanon. Ringhom [mm] $\IZ \to \IF$ [/mm]
Angenommen $p$ nicht prim
[mm] $\Rightarrow$ [/mm] es gibt [mm] a,b \in \IZ: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow [/mm] es gibt [mm] s \in \IZ: ps = ab [/mm]
[mm] \Rightarrow \phi(a)\phi(b) = \phi(ab) = \phi(ps) = \phi(p)\phi(s) = 0 [/mm], da $p [mm] \in Kern(\phi)$ [/mm]
[mm] \Rightarrow 0 = \phi(a)\phi(b) [/mm] mit [mm] $\phi(a) \not= [/mm] 0, [mm] \phi(b) \not= [/mm] 0$, da $a,b [mm] \notin [/mm] (p) [mm] \subset \IZ$ [/mm]
[mm]\Rightarrow \IF [/mm] nicht nullteilerfrei, also kein Körper.
Jetzt korrekt?


> > (ii) Die Aussage erscheint mir logisch. Ich finde aber
> > keinen Ansatz zu einem Beweis. Ich weiß, dass [mm]§\IF$[/mm] auf
> > jeden Fall einen zu [mm]\IZ/p\IZ[/mm][/mm] isomorphen Teilkörper
> > enthält. Komme ich damit weiter?
>  
> Ueberleg dir, dass [mm]\IF[/mm] ein Vektorraum ueber diesem
> Teilkoerper ist.
>  

Ich sehe ein, dass man z.B. [mm] $\IF_4$ [/mm] als Vektorraum der Dimension 2 über [mm] $\IF_2$ [/mm] betrachten kann. Ich weiß leider nicht wie ich dies allgemein zeigen kann. Kannst du (oder auch gerne jemand anders) mir da nochmal eine Tipp geben?

Vielen Dank nochmal.

Viele Grüße, Lippel


Bezug
                        
Bezug
Endliche Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Do 02.09.2010
Autor: felixf

Moin!

> Hallo Felix, vielen Dank für deine Antwort (mal wieder ;-)
> )

Bitte :)

> > > Es sei [mm]\IF[/mm] ein endlicher Körper der Charakteristik [mm]p[/mm],
> > > wobei [mm]p[/mm] den Kern des kanonischen Ringhomomorphismus [mm]\IZ \to \IF[/mm]
> > > erzeugt. Man zeige:
>  >  >  (i) p ist eine Primzahl
>  >  >  (ii) Es besteht [mm]\IF[/mm] aus [mm]p^r[/mm] Elementen, wobei r eine
> > > geeignete natürliche Zahl ist.
>  >  >  
> > > ich denke zu (i) habe ich eine Lösung, die allerdings der
> > > Verifikation bedarf, bin mir nicht ganz sicher. In Teil
> > > (ii) hänge ich.
>  >  >  
> > > (i) Angenommen p nicht prim [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IF: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow 0 = ab[/mm]
>  
> >  

> > Was bedeutet Teilbarkeit in [mm]\IF[/mm]? Du solltest [mm]a, b \in \IZ[/mm]
> > waehlen, und dann ihr Bild in [mm]\IF[/mm] betrachten.
>  >  
> Nochmal: [mm]\phi[/mm] beizeichne den kanon. Ringhom [mm]\IZ \to \IF[/mm]
>  
> Angenommen [mm]p[/mm] nicht prim
>  [mm]\Rightarrow[/mm] es gibt [mm]a,b \in \IZ: p | ab, p\nmid{a}, p\nmid{b} \Rightarrow[/mm]
> es gibt [mm]s \in \IZ: ps = ab[/mm]
>  [mm]\Rightarrow \phi(a)\phi(b) = \phi(ab) = \phi(ps) = \phi(p)\phi(s) = 0 [/mm],
> da [mm]p \in Kern(\phi)[/mm]
>  [mm]\Rightarrow 0 = \phi(a)\phi(b)[/mm] mit
> [mm]\phi(a) \not= 0, \phi(b) \not= 0[/mm], da [mm]a,b \notin (p) \subset \IZ[/mm]
>  
> [mm]\Rightarrow \IF[/mm] nicht nullteilerfrei, also kein Körper.
>  Jetzt korrekt?

Ja, so ist's perfekt :)

Alternativ kannst du auch benutzen, dass du $p = a b$ mit $0 < a, b < p$, $a, b [mm] \in \IZ$ [/mm] schreiben kannst, wenn $p$ nicht prim ist. Je nachdem wie man Primzahl nun genau definiert hat ;-)

> > > (ii) Die Aussage erscheint mir logisch. Ich finde aber
> > > keinen Ansatz zu einem Beweis. Ich weiß, dass [mm]§\IF$[/mm] auf
> > > jeden Fall einen zu [mm]\IZ/p\IZ[/mm][/mm] isomorphen Teilkörper
> > > enthält. Komme ich damit weiter?
>  >  
> > Ueberleg dir, dass [mm]\IF[/mm] ein Vektorraum ueber diesem
> > Teilkoerper ist.
>
> Ich sehe ein, dass man z.B. [mm]\IF_4[/mm] als Vektorraum der
> Dimension 2 über [mm]\IF_2[/mm] betrachten kann. Ich weiß leider
> nicht wie ich dies allgemein zeigen kann. Kannst du (oder
> auch gerne jemand anders) mir da nochmal eine Tipp geben?

Nun, du kannst natuerlich die Vektorraumaxiome nachrechnen. Das ist ziemlich einfach.

Wenn [mm] $\IF$ [/mm] ein $r$-dimensionaler [mm] $\IF_p$-Vektorraum [/mm] ist, dann ist [mm] $\IF$ [/mm] isomorph zu [mm] $\IF_p^r$, [/mm] und hat somit [mm] $p^r$ [/mm] Elemente.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de