www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Endliche Menge
Endliche Menge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mi 20.07.2016
Autor: Mathics

Liebes Forum,

wenn es eine endliche Menge gibt, gibt es dann automatisch auch zu jedem Argument einen Funktionswert?

In Wikipedia steht in etwa, dass eine Menge M endlich heißt , wenn es eine natürliche Zahl n gibt, sodass eine Bijektion (eine Eins-zu-eins-Zuordnung) existiert.

LG

Mathics



        
Bezug
Endliche Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 02:40 Do 21.07.2016
Autor: Fulla

Hallo Mathics!

Das kann man so oder so definieren. Deine Formulierung ist aber ein bisschen holprig...

Zunächst mal heißt "bijektiv" insbesondere "surjektiv", d.h. jeder Funktionswert wird angenommen.

Die Definition wäre dann in etwa:
"Eine Menge M heißt endlich, wenn es ein [mm]n\in\mathbb N[/mm] und eine bijektive Abbildung [mm]f\colon M\to N:=\{1,\ldots ,n\}[/mm] gibt, so dass für jedes [mm]x\in M[/mm] ein [mm]y\in N[/mm] existiert mit [mm]f(x)=y[/mm]."

Diese Definition ist insofern praktisch, weil dieses [mm]n[/mm] gerade die Mächtigkeit der Menge [mm]M[/mm] angibt.

Alternativ könnte man auch "bijektiv" durch "injektiv" ersetzen. Damit wären aber mehrere (unendlich viele) Wahlen für [mm]n[/mm] möglich, weil nicht jede Zahl kleinergleich [mm]n[/mm] angenommen werden muss.

Beispiel:
Sei [mm]M:=\{A, B, C, D, \ldots , X, Y, Z\}[/mm] die Menge des lateinischen Alphabets. Sie ist offensichtlich endlich.
Um mit der ersten Definition argumentieren zu können, müsstest du eine Abbildung finden, die jeden Buchstaben auf genau ein Element der Menge [mm]N:=\{1, 2, 3,\ldots , 24, 25, 26\}[/mm] abbildet. Das ist in dem Fall nicht schwer: [mm]f(A):=1[/mm], [mm]f(B):=2[/mm], ..., [mm]f(Z):=26[/mm].

Mit der alternativen Definition könntest du auch [mm]N:=\{1, 2, \ldots , 100, 101, 102\}[/mm] nehmen und die Buchstaben auf die ersten 26 Primzahlen abbilden: [mm]f(A):=2[/mm], [mm]f(B)=:3[/mm], ..., [mm]f(Z):=101[/mm].

Hier könnte man jetzt hergehen und alle Nicht-Primzahlen aus [mm]N[/mm] streichen, und wir wären wieder bei ersterer Definition...

Beachte aber: "surjektiv" allein reicht nicht aus!
Sei [mm]M:=\mathbb R[/mm] und [mm]N:=\{1\}[/mm]. Die Abbildung [mm]f\colon M\to N[/mm] mit [mm]f(x):=1[/mm] ist surjektiv, aber [mm]M[/mm] ist nicht endlich.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Endliche Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:13 Do 21.07.2016
Autor: Mathics

Hallo Fulla,

kann eine solche Funktion mit endlichen Mengen dann stetig sein? Weil sie besteht doch nur aus Punkten und nicht aus Verbindungslinien, oder?


LG
Mathics

Bezug
                        
Bezug
Endliche Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:39 Do 21.07.2016
Autor: fred97


> Hallo Fulla,
>  
> kann eine solche Funktion mit endlichen Mengen dann stetig
> sein? Weil sie besteht doch nur aus Punkten und nicht aus
> Verbindungslinien, oder?

Sind A und B nichtleere Mengen und f:A [mm] \to [/mm] B eine Funktion, so kann man nur von der Stetigkeit von f reden, wenn A und B topologische Räume sind.

Je nach dem, wie die Topologien auf A bzw. B beschaffen sind, kann f stetig sein oder auch nicht.

FRED

>  
>
> LG
>  Mathics


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de