www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Endliche Produkte, Kompakt
Endliche Produkte, Kompakt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Produkte, Kompakt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mi 04.05.2016
Autor: impliziteFunktion

Aufgabe
Seien $X$ und $Y$ quasi-kompakt, [mm] $\mathcal{U}$ [/mm] eine offene Überdeckung von [mm] $X\times [/mm] Y$ und [mm] $x\in [/mm] X$ beliebig.

Die Abbildung [mm] $Y\mapsto [/mm] X$ [mm] ,$y\mapsto [/mm] (x,y)$, ist stetig und [mm] $\{x\}\times Y\subseteq X\times [/mm] Y$ ist quasi-kompakt



Hallo,

ich habe eine Frage zu dieser Teilaufgabe.
Erst einmal eine kleine Frage zu der Notation der Abbildung [mm] $Y\mapsto [/mm] X$. Ist das ein Tippfehler, oder ist eine solche Notation tatsächlich üblich?
Ich denke es ist ein Tippfehler und sollte auch eher auf [mm] $X\times [/mm] Y$ abbilden.
Also [mm] $f:Y\to X\times [/mm] Y$ mit [mm] $y\mapsto [/mm] (x,y)$.

Denn wie soll [mm] $Y\mapsto [/mm] X$ auf ein Tupel $(x,y)$ abbilden.
Das macht doch keinen Sinn.

Ansonsten würde ich dann für die Stetigkeit zeigen, dass die Urbilder offener Mengen offen sind.
Wenn ich dies mit dieser "Funktion" mache, dann komme ich aber darauf, dass das Paar [mm] $(x,y)\in U\subseteq [/mm] X$ und das macht für mich keinen Sinn...


Vielen Dank.

        
Bezug
Endliche Produkte, Kompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Mi 04.05.2016
Autor: fred97


> Seien [mm]X[/mm] und [mm]Y[/mm] quasi-kompakt, [mm]\mathcal{U}[/mm] eine offene
> Überdeckung von [mm]X\times Y[/mm] und [mm]x\in X[/mm] beliebig.
>  
> Die Abbildung [mm]Y\mapsto X[/mm] ,[mm]y\mapsto (x,y)[/mm], ist stetig und
> [mm]\{x\}\times Y\subseteq X\times Y[/mm] ist quasi-kompakt
>  
>
> Hallo,
>  
> ich habe eine Frage zu dieser Teilaufgabe.
>  Erst einmal eine kleine Frage zu der Notation der
> Abbildung [mm]Y\mapsto X[/mm]. Ist das ein Tippfehler, oder ist eine
> solche Notation tatsächlich üblich?
>  Ich denke es ist ein Tippfehler und sollte auch eher auf
> [mm]X\times Y[/mm] abbilden.
> Also [mm]f:Y\to X\times Y[/mm] mit [mm]y\mapsto (x,y)[/mm].
>  
> Denn wie soll [mm]Y\mapsto X[/mm] auf ein Tupel [mm](x,y)[/mm] abbilden.
> Das macht doch keinen Sinn.

ich sehe das genauso

fred


>  
> Ansonsten würde ich dann für die Stetigkeit zeigen, dass
> die Urbilder offener Mengen offen sind.
>  Wenn ich dies mit dieser "Funktion" mache, dann komme ich
> aber darauf, dass das Paar [mm](x,y)\in U\subseteq X[/mm] und das
> macht für mich keinen Sinn...
>  
>
> Vielen Dank.


Bezug
                
Bezug
Endliche Produkte, Kompakt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:22 Do 05.05.2016
Autor: impliziteFunktion

Danke.

Dann möchte ich nun zeigen, dass [mm] $f:Y\to X\times [/mm] Y$ stetig ist.
Also die Urbilder von offenen Mengen offen sind.

Sei [mm] $U\times V\subseteq X\times [/mm] Y$ offen. Dann ist [mm] $f^{-1}(U\times V)=\{y\in Y|f(y)\in U\times V\}$ [/mm]

Wie kann ich nun zeigen, dass diese Menge offen ist?

Bezug
                        
Bezug
Endliche Produkte, Kompakt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 07.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de