www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Endomorphismus-linear unabhängig
Endomorphismus-linear unabhängig < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus-linear unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 So 06.06.2004
Autor: nevinpol

Hallöchen!

habe hier eine Aufgabe, wofür ich einen Ansatz habe, aber
den Beweis nicht so hinkriege:(

Ich freue mich auf eure Hilfe :)




Also die Aufgabe lautet:

Es sei $F$ ein Endomorphismus des Vektorraums $V$ (über irgend einem Körper $K$)
und $v [mm] \in [/mm] V$.
Beweisen Sie:
Es gibt ein $n [mm] \in \IN$ [/mm] mit [mm] $F^{n}(v) \ne [/mm] 0$, aber [mm] $F^{n+1}=0$, [/mm] dann ist die Familie

$v, F(v), [mm] F^2(v),...,F^n(v)$ [/mm] linear unabhängig.




Mein Ansatz:

Also über Endomorphismus habe ich gelesen, dass es die Abbildung in sich selbst ist.
Also dass es im Grunde ein Homomorphismus ist, wobei V=W ist.
Ich konnte aber daraus für diese Aufgabe nicht soviel basteln.

Jedenfalls gilt ja für den Beweis der linearen Unabhängigkeit:



[mm] $v_o \cdot \lambda_0 [/mm] + F(v) [mm] \cdot \lambda_1 [/mm] + [mm] F^2(v) \cdot \lambda_2 [/mm] + ... + [mm] F^n(v) \cdot \lambda_n [/mm] = 0$ mit

der einzigen Lösung -> [mm] $\lambda_0, \lambda_1, [/mm] ... , [mm] \lambda_n=0$ [/mm] ist.



Ich hoffe jemand kann mir einen Tipp zu einem richtigen Ansatz geben.

Schönen Sonntag noch

nevinpol







        
Bezug
Endomorphismus-linear unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 06.06.2004
Autor: Marc

Hallo nevinpol,

> Es sei $F$ ein Endomorphismus des Vektorraums $V$ (über
> irgend einem Körper $K$)
>  und $v [mm] \in [/mm] V$.
> Beweisen Sie:
>  Es gibt ein $n [mm] \in \IN$ [/mm] mit [mm] $F^{n}(v) \ne [/mm] 0$, aber
> [mm] $F^{n+1}=0$, [/mm] dann ist die Familie
>  
> $v, F(v), [mm] F^2(v),...,F^n(v)$ [/mm] linear unabhängig.
>  
>
>
> Mein Ansatz:
>  
> Also über Endomorphismus habe ich gelesen, dass es die

Sehr vorbildlich :-)

> Abbildung in sich selbst ist.
>  Also dass es im Grunde ein Homomorphismus ist, wobei V=W
> ist.

[ok]

Die Homomorphismen zwischen Vektorräumen sind auch bekannt unter dem Namen lineare Abbildung...

>  Ich konnte aber daraus für diese Aufgabe nicht soviel
> basteln.
>  
> Jedenfalls gilt ja für den Beweis der linearen
> Unabhängigkeit:
>  
>
>
> [mm] $v_o \cdot \lambda_0 [/mm] + F(v) [mm] \cdot \lambda_1 [/mm] + [mm] F^2(v) \cdot \lambda_2 [/mm] + ... + [mm] F^n(v) \cdot \lambda_n [/mm] = 0$ mit
>  
> der einzigen Lösung -> [mm] $\lambda_0, \lambda_1, [/mm] ... , [mm] \lambda_n=0$ [/mm] ist.

Der Ansatz ist schon mal sehr gut.
Jetzt mußt du noch irgendwie die spezielle Eigenschaft von F ausnutzen.
Tipp: Wende auf die Gleichung $v [mm] \cdot \lambda_0 [/mm] + F(v) [mm] \cdot \lambda_1 [/mm] + [mm] F^2(v) \cdot \lambda_2 [/mm] + ... + [mm] F^n(v) \cdot \lambda_n [/mm] = 0$ (n-1) Mal  die Abbildung F (auf beiden Seiten der Gleichung an). Was folgt dann unmittelbar? Wie kann man diese Erkenntnis auch auf die anderen [mm] \lambda_i [/mm] ausweiten?

Viel Spaß beim Lösen,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de