www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Endomorphismus
Endomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Mo 11.08.2008
Autor: johnny11

Aufgabe
Sei [mm] \pi [/mm] : V [mm] \to [/mm] V ein Endomorphismus eines endlichdimensionalen Vektorraums V. Man beweise, dass es eine ganze Zahl n mit (kern [mm] \pi^{n}) \cap [/mm] (im [mm] \pi^{n}) [/mm] = 0 gibt.

Zuerst habe ich gedacht, ich könnte zeigen, dass [mm] \pi [/mm] nilpotent ist. Dann würde ja für ein n dass [mm] \pi^{n} [/mm] = 0 und daraus würde doch dann die zu zeigende Behauptung folgen.
Doch nun habe ich bemerkt, dass [mm] \pi [/mm] unter Umständen gar nicht nilpotent ist.
Wie kann man diese Behauptung denn zeigen?

        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mo 11.08.2008
Autor: Merle23


> Sei [mm]\pi[/mm] : V [mm]\to[/mm] V ein Endomorphismus eines
> endlichdimensionalen Vektorraums V. Man beweise, dass es
> eine ganze Zahl n mit (kern [mm]\pi^{n}) \cap[/mm] (im [mm]\pi^{n})[/mm] = 0
> gibt.

Du meinst wohl: (kern [mm]\pi^{n}) \cap[/mm] (im [mm]\pi^{n})[/mm] = [mm] \emptyset. [/mm]

>  Zuerst habe ich gedacht, ich könnte zeigen, dass [mm]\pi[/mm]
> nilpotent ist. Dann würde ja für ein n dass [mm]\pi^{n}[/mm] = 0 und
> daraus würde doch dann die zu zeigende Behauptung folgen.
>  Doch nun habe ich bemerkt, dass [mm]\pi[/mm] unter Umständen gar
> nicht nilpotent ist.
>  Wie kann man diese Behauptung denn zeigen?

Eine lineare Abbildung ist durch die Angabe der Bilder der Basisvektoren festgelegt.
Wenn du nun einen Basisvektor nimmst und immer wieder die Abbildung draufwirfst, dann können zwei Sachen passieren: Entweder wird er irgendwann zu Null oder er kommt irgendwann in eine unendliches Schema, also wird immer abwechselnd auf Vektoren abgebildet, kommt aber eben so nie auf die Null.
Wenn du das für alle Basisvektoren durchziehst, dann hast du deine disjunkten Basen von kern [mm] \pi^n [/mm] und im [mm] \pi^n, [/mm] je nachdem wo die Basis "hingeht".

Bezug
                
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mo 11.08.2008
Autor: johnny11

Hallo Merle23,
Vielen Dank für die tolle Erklärung.


Bezug
                
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Di 12.08.2008
Autor: fred97


> > Sei [mm]\pi[/mm] : V [mm]\to[/mm] V ein Endomorphismus eines
> > endlichdimensionalen Vektorraums V. Man beweise, dass es
> > eine ganze Zahl n mit (kern [mm]\pi^{n}) \cap[/mm] (im [mm]\pi^{n})[/mm] = 0
> > gibt.
>  
> Du meinst wohl: (kern [mm]\pi^{n}) \cap[/mm] (im [mm]\pi^{n})[/mm] =
> [mm]\emptyset.[/mm]

Nein, das meint johnny nicht ! Sondern:

(kern [mm]\pi^{n}) \cap[/mm] (im [mm]\pi^{n})[/mm] = {0}

>  
> >  Zuerst habe ich gedacht, ich könnte zeigen, dass [mm]\pi[/mm]

> > nilpotent ist. Dann würde ja für ein n dass [mm]\pi^{n}[/mm] = 0 und
> > daraus würde doch dann die zu zeigende Behauptung folgen.
>  >  Doch nun habe ich bemerkt, dass [mm]\pi[/mm] unter Umständen gar
> > nicht nilpotent ist.
>  >  Wie kann man diese Behauptung denn zeigen?
>
> Eine lineare Abbildung ist durch die Angabe der Bilder der
> Basisvektoren festgelegt.
>  Wenn du nun einen Basisvektor nimmst und immer wieder die
> Abbildung draufwirfst, dann können zwei Sachen passieren:
> Entweder wird er irgendwann zu Null oder er kommt
> irgendwann in eine unendliches Schema, also wird immer
> abwechselnd auf Vektoren abgebildet, kommt aber eben so nie
> auf die Null.
>  Wenn du das für alle Basisvektoren durchziehst, dann hast
> du deine disjunkten Basen von kern [mm]\pi^n[/mm] und im [mm]\pi^n,[/mm] je
> nachdem wo die Basis "hingeht".


FRED

Bezug
        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 12.08.2008
Autor: fred97

Hallo johnny,

wir nehmen n = dim V.

Wegen {0} [mm] \subseteq [/mm] kern [mm] \pi \subseteq [/mm]  kern [mm] \pi^2 \subseteq [/mm] kern [mm] \pi^3 \subseteq [/mm] ........... gilt mit obigem n:

(*)     kern [mm] \pi^n [/mm] = kern [mm] \pi^{n+1} [/mm] =.......= kern [mm] \pi^{2n} [/mm]


Sei x [mm] \in [/mm] (kern $ [mm] \pi^{n}) \cap [/mm] $ (im $ [mm] \pi^{n}) [/mm] $ . Es ist zu zeigen: x = 0.

Dann ist  [mm] \pi^{n} [/mm] (x) = 0 und es ex ein y in V mit  x =  [mm] \pi^{n} [/mm] (y), also ist

y [mm] \in [/mm] kern [mm] \pi^{2n}. [/mm] Wegen (*) folgt: y [mm] \in [/mm] kern [mm] \pi^{n}, [/mm] also x = 0.


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de