www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "physikalische Chemie" - Energieniveau eines Farbstoffs
Energieniveau eines Farbstoffs < physikalische Chemie < Chemie < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "physikalische Chemie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Energieniveau eines Farbstoffs: Grundzustandsenergien; Pauli
Status: (Frage) beantwortet Status 
Datum: 16:06 Fr 12.09.2008
Autor: hoek

Aufgabe
[Dateianhang nicht öffentlich]

Aufgabenstellung habe ich oben angehängt; das abzutippen wäre nicht wirklich machbar.

Mich interessiert vor allem Frage 3:

Was ist hier gemeint?

Ich weiß inzwischen, dass ich für k=0 6 [mm] \pi-Elektronen, [/mm] für k=1 8 [mm] \pi-Elektronen, [/mm] und für k=2 10 [mm] \pi-Elektronen [/mm] habe (Einfach die Doppelbindungen zählen, sehe ich das richtig?)

Nun weiß ich aich, dass ich den Energieeigenwert eines Teilchens im Potentialtopf mit der Formel

[mm] E_{n} [/mm] = [mm] \bruch{\pi^{2}* \bar h^{2}}{2*m_{e}*L^{2}} [/mm] * [mm] n^{2} [/mm]

berechnen kann, wobei L die Länge des Potentialtopfes ist.

Wie wende ich diese Formel aber in diesem Fall an?

Ich habe eine Lösung auf Papier, die die Formel oben nimmt, und hinten statt [mm] n^{2} [/mm] folgendes einsetzt: [mm] 2(n^{2}+(n+1)^{2}+...) [/mm]

für k=0 also: [mm] 2(1^{2}+2^{2}+3^{2}) [/mm]
für k=0 also: [mm] 2(1^{2}+2^{2}+3^{2}+4^{2}) [/mm]
für k=0 also: [mm] 2(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}) [/mm]

Was hat das zu bedeuten? Kann mir jemand einen Tipp geben?

Vielen Dank im Voraus!

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt)

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Energieniveau eines Farbstoffs: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Fr 12.09.2008
Autor: rainerS

Hallo!

> [Dateianhang nicht öffentlich]
>  Aufgabenstellung habe ich oben angehängt; das abzutippen
> wäre nicht wirklich machbar.
>  
> Mich interessiert vor allem Frage 3:
>  
> Was ist hier gemeint?
>  
> Ich weiß inzwischen, dass ich für k=0 6 [mm]\pi-Elektronen,[/mm] für
> k=1 8 [mm]\pi-Elektronen,[/mm] und für k=2 10 [mm]\pi-Elektronen[/mm] habe
> (Einfach die Doppelbindungen zählen, sehe ich das
> richtig?)
>  
> Nun weiß ich aich, dass ich den Energieeigenwert eines
> Teilchens im Potentialtopf mit der Formel
>  
> [mm]E_{n}[/mm] = [mm]\bruch{\pi^{2}* \bar h^{2}}{2*m_{e}*L^{2}}[/mm] *
> [mm]n^{2}[/mm]
>  
> berechnen kann, wobei L die Länge des Potentialtopfes ist.
>  
> Wie wende ich diese Formel aber in diesem Fall an?
>  
> Ich habe eine Lösung auf Papier, die die Formel oben nimmt,
> und hinten statt [mm]n^{2}[/mm] folgendes einsetzt:
> [mm]2(n^{2}+(n+1)^{2}+...)[/mm]
>  
> für k=0 also: [mm]2(1^{2}+2^{2}+3^{2})[/mm]
>  für k=0 also: [mm]2(1^{2}+2^{2}+3^{2}+4^{2})[/mm]
>  für k=0 also: [mm]2(1^{2}+2^{2}+3^{2}+4^{2}+5^{2})[/mm]
>  
> Was hat das zu bedeuten? Kann mir jemand einen Tipp geben?

Das ist das Pauli-Prinzip: in jedem Zustand kann nur ein Elektron vorkommen. Wegen der zwei möglichen Werte für den Elektronenspin gibt es für jeden Wert von n nur zwei mögliche Zustände.

Jetzt setzt du nur noch ein: bis zu n=3 kannst du 6 Elektronen unterbringen, davon zwei in n=1, zwei in n=2 und zwei in n=3. Die Gesamtenergie ist also

[mm] \bruch{\pi^{2}* \hbar^{2}}{2*m_{e}*L^{2}} * (2*1^2 + 2*2^2 +2*3^2) [/mm]

Viele Grüße
   Rainer


Bezug
                
Bezug
Energieniveau eines Farbstoffs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Sa 13.09.2008
Autor: hoek

Ok, vielen Dank soweit.

Wie verhält es sich nun mit Teilaufgabe 4?

Ich brauche ja eine Energiedifferenz, z.B. habe ich hier in einem Lösungsvorschlag (von dem ich nicht weiß ob er richtig ist)

für k=0: [mm] \Delta [/mm] E = [mm] E_{4}-E_{3} [/mm] stehen, das zu Berechnen wäre ja kein Problem, aber warum die 4. und die 3. Ionisierungsenergie?

Wie kommen diese Indizes zustande? Und wie verhält es sich dann bei k=1 und k=2?

Vielen Dank

Bezug
                        
Bezug
Energieniveau eines Farbstoffs: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 14.09.2008
Autor: rainerS

Hallo!

> Ok, vielen Dank soweit.
>  
> Wie verhält es sich nun mit Teilaufgabe 4?
>  
> Ich brauche ja eine Energiedifferenz, z.B. habe ich hier in
> einem Lösungsvorschlag (von dem ich nicht weiß ob er
> richtig ist)
>  
> für k=0: [mm]\Delta[/mm] E = [mm]E_{4}-E_{3}[/mm] stehen, das zu Berechnen
> wäre ja kein Problem, aber warum die 4. und die 3.
> Ionisierungsenergie?

In welchen Energiezuständen sitzen die 6 Elektronen? Wie sieht daher die erste Anregung aus? Immer unter Beachtung des Pauliprinzips, dass pro Energiezustand höchstens zwei Elektronen vorkommen.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "physikalische Chemie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de