www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Entfernung vom Kood.ursprng
Entfernung vom Kood.ursprng < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entfernung vom Kood.ursprng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 14.05.2008
Autor: mr.states

Hallo, ich befasse mich schon einige Stunden mit dem Thema aber ich komme auf keine Lösung. ich höffe jemand kann mir helfen oder einen Tipp geben, danke
Aufgabe:
Man bestimme auf dem Graphen der Funktion [mm] x^2*y=4 [/mm] denjenigen Punkt im ersten Quadranten, dessen Entfernung vom Koordinatenursprung minimal ist. wie groß ist die Entfernung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Entfernung vom Kood.ursprng: Abstandsformel
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 14.05.2008
Autor: Loddar

Hallo mr.states,

[willkommenmr] !!


Verwende hier die Abstandsformel zweier Punkte im [mm] $\IR^2$ [/mm] :
[mm] $$d_{PQ} [/mm] \ = \ [mm] \wurzel{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2}$$ [/mm]

Dabei gilt hier: [mm] $x_P [/mm] \ = \ [mm] y_P [/mm] \ = \ 0$ sowie [mm] $y_Q [/mm] \ = \ y \ = \ [mm] \bruch{4}{x^2}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Entfernung vom Kood.ursprng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Mi 14.05.2008
Autor: mr.states

Hallo Loddar,
danke für deine schnelle Antwort.
An die Kreisgleichung hatte ich auch schon die ganze Zeit gedacht.
Nur das Problem ist das ich nicht auf den Punkt komme der in der Funktion minimal entfernt ist. Also die X und Y Koordinaten


Bezug
                        
Bezug
Entfernung vom Kood.ursprng: Extremwertberechnung
Status: (Antwort) fertig Status 
Datum: 18:05 Mi 14.05.2008
Autor: Loddar

Hallo mr.states!


Durch Einsetzen der o.g. Werte in die Formel hast Du doch eine Funktion $d(x) \ = \ ...$ .

Für diese musst Du nun eine Extremwertberechnung (Nullstellen der 1. Ableitung etc.) durchführen.

Zur Vereinfachung kannst Du diese Extremwertberechnung auch mit [mm] $[d(x)]^2$ [/mm] durchführen.


Gruß
Loddar


Bezug
                                
Bezug
Entfernung vom Kood.ursprng: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mi 14.05.2008
Autor: mr.states

Hallo,
besten dank, das mit dem Ableiten da muss man erst mal drauf kommen. aber dann war es kein problem mehr.
ableitung:
[mm] \bruch{3x^3}{\wurzel{x^6+16}}-\bruch{2\wurzel{x^6+16}}{x^3}=0 [/mm]
x=2^(5/6)

[mm] r=\wurzel{(x^2)+(16/x^4)} [/mm]

[mm] r=\wurzel{3}*2^{1/3} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de