www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Entwicklung Potenzreihe
Entwicklung Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwicklung Potenzreihe: komplexe Potenzreihe Umformung
Status: (Frage) beantwortet Status 
Datum: 14:28 So 21.02.2010
Autor: Loewenzahn

Aufgabe
Die Funktion [mm] \bruch{1}{z+2} [/mm] , z ist ungleich -2, ist in eine Potenzreihe um [mm] z_{0} [/mm] zu entwickeln. Bestimmen Sie den Konvergenzradius dieser Reihe.

[mm] Lösung:\summe_{n=1}^{\infty}\bruch{(-1)^n}{7^{(n+1)}} (z-5)^n [/mm]
r= 7


Hallo!

Ich brauch Hilfe, weil ich nicht weiß, wie man auf die Lösung kommt...Ich bin nur ein Stück weit gekommen:

[mm] \bruch{1}{2+(z-z_{0})+z_{0}}=\bruch{1}{2+(z-5)+5}=\bruch{1}{7+(z-5)} [/mm] =?

Mein Problem ist, dass ich diesen Ausdruck nicht umformen kann, damit ich einen "Koeffizientenvergleich mit der  dem linken Teil der Regel  [mm] \bruch{1}{1-(z-z_{0})}=\summe_{n=1}^{n}c_{n}(z-z_{n}) [/mm] machen kann.

Mich stört das "+" und mich stört die "7"...Und als ich die Lösung angeguckt habe, da dacht ich mir: Es gibt bestimmt ne Äquivalenzumformung dafür, aber in meinem Merziger finde ich dazu nix....Wer weiß Rat?

        
Bezug
Entwicklung Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 So 21.02.2010
Autor: fencheltee


> Die Funktion [mm]\bruch{1}{z+2}[/mm] , z ist ungleich -2, ist in
> eine Potenzreihe um [mm]z_{0}[/mm] zu entwickeln. Bestimmen Sie den
> Konvergenzradius dieser Reihe.
>  
> [mm]Lösung:\summe_{n=1}^{\infty}\bruch{(-1)^n}{7^{(n+1)}} (z-5)^n[/mm]
>  
> r= 7
>  
>
> Hallo!
>  
> Ich brauch Hilfe, weil ich nicht weiß, wie man auf die
> Lösung kommt...Ich bin nur ein Stück weit gekommen:
>  
> [mm]\bruch{1}{2+(z-z_{0})+z_{0}}=\bruch{1}{2+(z-5)+5}=\bruch{1}{7+(z-5)}[/mm]
> =?

klammer im nenner noch die 7 aus und denke an die geometrische reihe mit
[mm] \sum_{k=0}^{\infty} a_0 q^k [/mm] = [mm] \frac{a_0}{1-q}, [/mm]

>  
> Mein Problem ist, dass ich diesen Ausdruck nicht umformen
> kann, damit ich einen "Koeffizientenvergleich mit der  dem
> linken Teil der Regel  
> [mm]\bruch{1}{1-(z-z_{0})}=\summe_{n=1}^{n}c_{n}(z-z_{n})[/mm]
> machen kann.
>  
> Mich stört das "+" und mich stört die "7"...Und als ich
> die Lösung angeguckt habe, da dacht ich mir: Es gibt
> bestimmt ne Äquivalenzumformung dafür, aber in meinem
> Merziger finde ich dazu nix....Wer weiß Rat?

gruß tee

Bezug
                
Bezug
Entwicklung Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 So 21.02.2010
Autor: Loewenzahn

Ahhh... okay,

also ich habe das gemacht, aber dann hat es nicht hingehauen, weil ich zwar 1/7 ausgeklammert hatte, aber das iwie nicht mehr als Faktor beachtet habe...dann noch das "-" vergessen, und schon sah meine Lsg. kommplett anders aus...daher hatte ich's verworfen....
Okay, es ergibt ich also
[mm] \bruch{1}{7}*\bruch{1}{1+\bruch{1}{7}*(z-5)}=\bruch{1}{7}*\bruch{1}{1-(-\bruch{1}{7}*(z-5))}=\bruch{1}{7}*\bruch{1}{1-(-\bruch{1}{7}*(z-5))} [/mm]
MIt [mm] (-\bruch{1}{7}*(z-5))="q" [/mm]
ergibt sich
[mm] \bruch{1}{7}\summe_{n=\infty}(-\bruch{1}{7}*(z-5))^{n}= \bruch{1}{7}\summe_{n=\infty}(-\bruch{1}{7})^{n}*(z-5)^{n} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de