www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Entwicklung in reele Fourierre
Entwicklung in reele Fourierre < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwicklung in reele Fourierre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Mo 16.04.2012
Autor: winty

Aufgabe
Entwickeln sie f(t)=t für 0<t<2pi in eine reelle Fourierreihe
Skizzieren sie, wie f(t) durch die Reihe periodisch fortgesetzt wird.

Wie kann ich die Funktion in eine reelle Fourierreihe entwickeln? Wenn ich das Fourierintegral bilde, habe ich doch einen komplexen anteil!?

Vielen dank im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Entwicklung in reele Fourierre: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 16.04.2012
Autor: fred97

Schau mal hier

http://de.wikipedia.org/wiki/Fourierreihe

unter "Allgemeine Form"

FRED

Bezug
                
Bezug
Entwicklung in reele Fourierre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Mo 16.04.2012
Autor: winty

Danke schonmal für die Antwort.
Berechne ich dann ak mit:
Integral von 0 bis 2*pi  (t*cos(kwt)dt
mittels partieller Integration?

Bezug
                        
Bezug
Entwicklung in reele Fourierre: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 16.04.2012
Autor: MathePower

Hallo winty,

> Danke schonmal für die Antwort.
> Berechne ich dann ak mit:
> Integral von 0 bis 2*pi  (t*cos(kwt)dt
> mittels partieller Integration?


Ja.


Gruss
MathePower

Bezug
                                
Bezug
Entwicklung in reele Fourierre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mo 16.04.2012
Autor: winty

Danke nochmals :)

ich bekomme für  [mm] a_{0}*1/2= [/mm] Pi/2 heraus, für [mm] a_{k}=0 [/mm] und für [mm] b_{k}=-1/k [/mm] heraus.
Lautet dann die fourier Reihe:
Pi/2 + [mm] \summe_{i=-\infty}^{\infty} [/mm] -1/k*sin(kwt) ?

Grüße

Bezug
                                        
Bezug
Entwicklung in reele Fourierre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mo 16.04.2012
Autor: MathePower

Hallo winty,

> Danke nochmals :)
>  
> ich bekomme für  [mm]a_{0}*1/2=[/mm] Pi/2 heraus, für [mm]a_{k}=0[/mm] und
> für [mm]b_{k}=-1/k[/mm] heraus.
>  Lautet dann die fourier Reihe:
>  Pi/2 + [mm]\summe_{i=-\infty}^{\infty}[/mm] -1/k*sin(kwt) ?
>  


Das Doppelte davon ist richtig, da w=1 ist.


> Grüße


Gruss
MathePower

Bezug
                                                
Bezug
Entwicklung in reele Fourierre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mo 16.04.2012
Autor: winty

Verstehe die Antwort leider nicht.
das doppelte von was?

Bezug
                                                        
Bezug
Entwicklung in reele Fourierre: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mo 16.04.2012
Autor: MathePower

Hallo winty,



> Verstehe die Antwort leider nicht.
>  das doppelte von was?


Das Doppelte von Deiner errechneten Fourierreihe.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de