www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Epsilon-Beweis bei Folgen
Epsilon-Beweis bei Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Beweis bei Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Sa 05.11.2005
Autor: pusteblume86

Hallo ihr!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe dringende Frage zu Folgen.
Wir haben in der letzten Vorlesung angefangen mit Folgen und Reihen , aber darüber noch nicht sehr viel erfahren...
Als Übungsaufgabe haben wir jetzt aber schon folgende:


Bestimmen sie für die Folge reeler Zahlen (aj) j  [mm] \in \IN, [/mm]   und a [mm] \in \IR [/mm] zu vorgegebenem  [mm] \varepsilon [/mm] größer 0 eine natürliche Zahl N , so dass aj  [mm] \in [/mm] (a- [mm] \varepsilon [/mm] , a +  [mm] \varepsilon) [/mm] für alle aj [mm] \in \IN [/mm] mit j  [mm] \ge [/mm] N gilt:

aj: =  [mm] \bruch{2 * j^3 + (-1)^j *j - 3}{j^3+3*(-1)^j} [/mm]  für j [mm] \in \IN [/mm] , a := 2


Jetzt weiß man ja, wegen der Definition zu Konvergenz von Folgen, dass a dann Grenzwert der Folge ist, wenn zu jedem [mm] \varepsilon [/mm] größer 0 ein N [mm] \in \IN [/mm] existiert, sodass [mm] \left| aj - a \right| [/mm] kleiner ist für alle n  [mm] \ge [/mm] N.

Also habe ich angefangen auszurechnen:

[mm] \left| \bruch{2 * j^3 + (-1)^j *j - 3}{j^3+3*(-1)^j} - 2 \right| [/mm] kleiner [mm] \varepsilon [/mm]

Umgeformt folgt daraus [mm] :\left| \bruch{(-1)^j * n - 3 *(-1)^j -3 }{j^3 + 3*(-1)^j}\right| [/mm] kleiner [mm] \varepsilon [/mm]

Nun müsste ich das ja irgendwie nach j auflösen um sagen zu können , ab welchem j die Folge für jedes noch so kleine  [mm] \varepsilon [/mm]  in dem Bereich aj  [mm] \in [/mm] (a- [mm] \varepsilon [/mm] , a +  [mm] \varepsilon) [/mm] liegt. (also in der Epsilon-Umgebung)

Aber irgendwie komme ich bei dieser Foge überhaupt nicht weiter.
Könnt ihr mir weiterhelfen?

Lg Sandra


        
Bezug
Epsilon-Beweis bei Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Sa 05.11.2005
Autor: pusteblume86

Mir ist noch eingefallen, dass man evtl. eine Fallunterschiedung machen könnte...

einmal für gerade j und einmal für ungerade j .

Denn in dem Fall das j gerade ist, ist  [mm] (-1)^j= [/mm] 1
in dem Fall das j ungerade ist, ist [mm] (-1)^j [/mm] = -1

Evtl. kann man das bei der Umformung benutzen.

Ich komme aber trotzdem irgendiwe nicht voran bei der Aufgabe.....

Liebe Grüße Sandra

Bezug
        
Bezug
Epsilon-Beweis bei Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 So 06.11.2005
Autor: pusteblume86

Hallo ihr!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt, aber mit einem kürzeren Lösungsweg schonmal in diesem Forum!
da aber bisher keiner geantwortet hat,wollte ich jetzt noichmal meinen Eintrag mit einem besseren Lösungsweg erweitern.

Wir haben in der letzten Vorlesung angefangen mit Folgen und Reihen , aber darüber noch nicht sehr viel erfahren...
Als Übungsaufgabe haben wir jetzt aber schon folgende:


Bestimmen sie für die Folge reeler Zahlen (aj) j  [mm] \in \IN, [/mm]   und a [mm] \in \IR [/mm] zu vorgegebenem  [mm] \varepsilon [/mm] größer 0 eine natürliche Zahl N , so dass aj  [mm] \in [/mm] (a- [mm] \varepsilon [/mm] , a +  [mm] \varepsilon) [/mm] für alle aj [mm] \in \IN [/mm] mit j  [mm] \ge [/mm] N gilt:

aj: =  [mm] \bruch{2 * j^3 + (-1)^j *j - 3}{j^3+3*(-1)^j} [/mm]  für j [mm] \in \IN [/mm] , a := 2


Jetzt weiß man ja, wegen der Definition zu Konvergenz von Folgen, dass a dann Grenzwert der Folge ist, wenn zu jedem [mm] \varepsilon [/mm] größer 0 ein N [mm] \in \IN [/mm] existiert, sodass [mm] \left| aj - a \right| [/mm] kleiner ist für alle n  [mm] \ge [/mm] N.

Also habe ich angefangen auszurechnen:

[mm] \left| \bruch{2 * j^3 + (-1)^j *j - 3}{j^3+3*(-1)^j} - 2 \right| [/mm] kleiner [mm] \varepsilon [/mm]

Umgeformt folgt daraus [mm] :\left| \bruch{(-1)^j * n - 6 *(-1)^j -3 }{j^3 + 3*(-1)^j}\right| [/mm] kleiner [mm] \varepsilon [/mm]

Nun müsste ich das ja irgendwie nach j auflösen um sagen zu können , ab welchem j die Folge für jedes noch so kleine  [mm] \varepsilon [/mm]  in dem Bereich aj  [mm] \in [/mm] (a- [mm] \varepsilon [/mm] , a +  [mm] \varepsilon) [/mm] liegt. (also in der Epsilon-Umgebung)

Wenn man nun zwischen geraden j und ungeraden j unterscheidet, wird der Term in den Betragstrichen etwas übersichtlicher.

1.Fall j gerade :  [mm] \left| \bruch{ 1*j -9}{j^3+3}\right| [/mm] kleiner [mm] \varepsilon [/mm]
2.Fall  j ungerade :  [mm] \left| \bruch{ -1*j +3}{j^3-3}\right| [/mm] kleiner [mm] \varepsilon [/mm]

wenn man das weiterumformt, komme ich jetzt auf  [mm] \left| \bruch{1}{\varepsilon} kleiner \left| \bruch{j^3+3}{j-9}\right| und wenn man das weiterumformt, komme ich jetzt auf \left| \bruch{1}{\varepsilon} \right| kleiner \left| \bruch{j^3-3}{j+3} \right| erstma bin ich nicht mal sciher ob das richtig ist, zweitens sagt mir das aber irgendwie auch gar nichts... wie bestimm ich daraus jetzt ein N so dass aj \in (a- \varepsilon , a + \varepsilon) für alle aj \in \IN mit j \ge N gilt: Könnt ihr mir JETZT weiterhelfen? Lg Sandra [/mm]

Bezug
                
Bezug
Epsilon-Beweis bei Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mi 09.11.2005
Autor: mathemaduenn

Hallo Sandra,
> 1.Fall j gerade :  [mm]\left| \bruch{ 1*j -9}{j^3+3}\right|[/mm]
> kleiner [mm]\varepsilon[/mm]
>  2.Fall  j ungerade :  [mm]\left| \bruch{ -1*j +3}{j^3-3}\right|[/mm]
> kleiner [mm]\varepsilon[/mm]

Fallunterscheidung macht das ganze schonmal übersichtlicher.
Es muß allerdings keine exakt Umformung sein. Abschätzen ist häufig einfacher.
Für j>9 gilt:
[mm]\left| \bruch{ 1*j -9}{j^3+3}\right|<\left| \bruch{j}{j^3}\right|[/mm]
Zähler größer , Nenner kleiner - gesamter Bruch größer
und
[mm] \left| \bruch{j}{j^3}\right|<\left| \bruch{1}{j}\right| [/mm]
Dann wird es leichter.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de