www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Epsilon-Delta-Kriterium
Epsilon-Delta-Kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Delta-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Sa 03.12.2011
Autor: JackRed

Aufgabe
f: [mm] \IR\to\IR, f(x)=|x^{2}-3| [/mm]
Zeige mit dem Epsilon-Delta-Kriterium, dass f in jedem [mm] x_{0}\in\IR [/mm] stetig ist.

Hallo,
Komme mit der Aufgabe nicht klar, obwohl sie wohl nicht so schwer sein sollte.
Ich muss also zeigen, dass es ein [mm] \delta>0 [/mm] gibt mit [mm] |x-x_{0}|<\delta, [/mm] so dass [mm] |f(x)-f(x_{0})|<\epsilon [/mm] für jedes [mm] \epsilon>0 [/mm] gilt.

Mein Problem ist, dass ich nicht weiß wie ich da rangehe. Hätte es mir so gedacht, dass ich bei mir auf dem Schmierzettel davon ausgehe, dass es so ein [mm] \delta [/mm] gibt und dann forme ich [mm] |f(x)-f(x_{0})| [/mm] so lange um bis ich es in Relation zu [mm] |x-x_{0}|<\delta [/mm] setzen kann und löse dann quasi weiter nach [mm] \delta [/mm] auf bis ich einen Ausdruck für [mm] \delta [/mm] unabhängig von x finde.

Im richtigen Beweis werfe ich das [mm] \delta [/mm] dann in den Raum (zeige vielleicht kurz wie ich drauf gekommen bin) und zeige dann, dass es für ein [mm] \epsilon>0 [/mm] ein eben dieses [mm] \delta [/mm] gibt mit [mm] |x-x_{0}|<\delta, [/mm] so dass [mm] |f(x)-f(x_{0})|<\epsilon [/mm] (Wie mache ich das konkret?).

Kann ich das so machen oder habe ich beim Epsilon-Delta-Kriterium irgendetwas falsch verstanden?

Nur wie geht es konkret bei dieser Aufgabe. Man hat dann ja [mm] ||x^{2}-3|-|x_{0}^{2}-3|| [/mm] und da weiß ich überhaupt nicht wie man das vereinfacht.

        
Bezug
Epsilon-Delta-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Sa 03.12.2011
Autor: schachuzipus

Hallo JackRed,


> f: [mm]\IR\to\IR, f(x)=|x^{2}-3|[/mm]
>  Zeige mit dem
> Epsilon-Delta-Kriterium, dass f in jedem [mm]x_{0}\in\IR[/mm] stetig
> ist.
>  Hallo,
>  Komme mit der Aufgabe nicht klar, obwohl sie wohl nicht so
> schwer sein sollte.
>  Ich muss also zeigen, dass es ein [mm]\delta>0[/mm] gibt mit
> [mm]|x-x_{0}|<\delta,[/mm] so dass [mm]|f(x)-f(x_{0})|<\epsilon[/mm] für
> jedes [mm]\epsilon>0[/mm] gilt.

Naja, da stimmt die Reihenfolge der Quantoren (implizit) nicht!

Du musst zeigen, dass es zu jedem [mm] $\varepsilon>0$ [/mm] ein [mm] $\delta>0$ [/mm] gibt, so dass...

>  
> Mein Problem ist, dass ich nicht weiß wie ich da rangehe.
> Hätte es mir so gedacht, dass ich bei mir auf dem
> Schmierzettel davon ausgehe, dass es so ein [mm]\delta[/mm] gibt und
> dann forme ich [mm]|f(x)-f(x_{0})|[/mm] so lange um bis ich es in
> Relation zu [mm]|x-x_{0}|<\delta[/mm] setzen kann und löse dann
> quasi weiter nach [mm]\delta[/mm] auf bis ich einen Ausdruck für
> [mm]\delta[/mm] unabhängig von x finde.
>  
> Im richtigen Beweis werfe ich das [mm]\delta[/mm] dann in den Raum
> (zeige vielleicht kurz wie ich drauf gekommen bin) und
> zeige dann, dass es für ein beliebiges !! [mm]\epsilon>0[/mm] ein eben dieses
> [mm]\delta[/mm] gibt mit [mm]|x-x_{0}|<\delta,[/mm] so dass
> [mm]|f(x)-f(x_{0})|<\epsilon[/mm]

So ist es richtig formuliert!

> (Wie mache ich das konkret?).
>  
> Kann ich das so machen oder habe ich beim
> Epsilon-Delta-Kriterium irgendetwas falsch verstanden?

Nö, so ist das übliche Vorgehen.

>  
> Nur wie geht es konkret bei dieser Aufgabe. Man hat dann ja
> [mm]||x^{2}-3|-|x_{0}^{2}-3||[/mm] und da weiß ich überhaupt nicht
> wie man das vereinfacht.

So wie ich das sehe, hilft die Dreiecksungleichung für die beiden "inneren" Beträge weiter ...

Der Rest ergibt sich dann recht einfach ...


Gruß

schachuzipus


Bezug
                
Bezug
Epsilon-Delta-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Sa 03.12.2011
Autor: JackRed

Hey danke erstmal für deine Antwort.

> So wie ich das sehe, hilft die Dreiecksungleichung für die
> beiden "inneren" Beträge weiter ...

Mh.. ich versteh grad' nicht wie ich die benutzen soll. Soll ich zuerst Nullen addieren, also z.B [mm] +x_{0}^{2}-x_{0}^{2} [/mm] im ersten [mm] +x^{2}-x^{2} [/mm] im zweiten Betrag und dann Dreiecksungleichung anwenden?
Dann käme ich auf:
[mm] ||x^{2}-3|-|x^{2}_{0}-3||\le||x^{2}-x^{2}_{0}|+|x^{2}-3|-(|x^{2}_{0}-x^{2}|+|x^{2}-3|)| [/mm]
Nur weiß ich wieder nicht wie ich ab hier weiter machen soll.

Bezug
                        
Bezug
Epsilon-Delta-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 So 04.12.2011
Autor: leduart

Hallo
du hast doch für [mm] x^2-3>0 [/mm] die funktion  [mm] f(x)=x^2-3 [/mm]
für [mm] x^2-3<0 [/mm] die Funktion [mm] f(x)=-x^2+3 [/mm]  deren stetigkeit zu zeigen musst du nicht, wenn du jemals schon [mm] x^2 [/mm] als stetig gezeigt hast. Also kommt es nur auf die 2 Stellen [mm] x=+\wurzel{3} [/mm] und x [mm] =-\wurzel{3} [/mm] an.  der Funktionswert ist 0.
und du musst nur zeigen, dass für [mm] x=\wurzel{3}\\pm \delta |x^2-3|<\epsilon [/mm]
gruss leduart


Bezug
                                
Bezug
Epsilon-Delta-Kriterium: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 So 04.12.2011
Autor: JackRed

Danke für deine Antwort. Ich werd's mal so versuchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de