www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - Ereignisse
Ereignisse < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Di 15.09.2009
Autor: domerich

Aufgabe
[Dateianhang nicht öffentlich]

nun rätsel ich hier schon lange rum was überhaupt gemeint ist

also A1 und A2 sind Ereignisse, dass etwas eintritt.

[mm] 0\lev\le1/2 [/mm] was heißt das? das Ereignis kann einen Wert zwischen 0 und 1/2 annehmen?

und was hat es mit dem Ai auf sich, damit sind wohl alle möglichen Ereignisse gemeint, doch was setzt ich für t ein?
1 und unendlich?

für t=1 krieg ich den [mm] \limes_{n\rightarrow\infty} \bruch{1}{0 } [/mm] = unendlich?

und für t=unendlich den [mm] \limes_{n\rightarrow\infty} [/mm] = 1

danke für eure verständliche erklärung!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 15.09.2009
Autor: luis52


> [Dateianhang nicht öffentlich]
>  nun rätsel ich hier schon lange rum was überhaupt
> gemeint ist
>  
> also A1 und A2 sind Ereignisse, dass etwas eintritt.
>  
> [mm]0\lev\le1/2[/mm] was heißt das? das Ereignis kann einen Wert
> zwischen 0 und 1/2 annehmen?
>  
> und was hat es mit dem Ai auf sich, damit sind wohl alle
> möglichen Ereignisse gemeint, doch was setzt ich für t
> ein?
>  1 und unendlich?
>  
> für t=1 krieg ich den [mm]\limes_{n\rightarrow\infty} \bruch{1}{0 }[/mm]
> = unendlich?
>  
> und für t=unendlich den [mm]\limes_{n\rightarrow\infty}[/mm] = 1
>  
> danke für eure verständliche erklärung!

Ich *vermute*, dass es sich um Mengen reeller Zahlen handelt, genauer Intervalle. So ist vermutlich [mm] $A_1=\{v\mid v\in\IR,0\le v,v<1/2\}$, [/mm] manchmal auch so geschrieben: [0,1/2) oder [0,1/2[.

Weiter ist [mm] $\bigcup_{i=1}^\infty A_i=\{v\mid v\in A_i\text{ fuer ein } i\}$ [/mm] und  [mm] $\bigcap_{i=1}^\infty A_i=\{v\mid v\in A_i\text{ fuer alle } i\}$. [/mm]

Zeichne mal die Intervalle, da siehst du, was passiert ...

vg Luis



Bezug
                
Bezug
Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 15.09.2009
Autor: domerich

Aufgabe
[Dateianhang nicht öffentlich]

ich bin leider überfragt!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Di 15.09.2009
Autor: ChopSuey

Hallo domerich,

für $ i [mm] \to \infty [/mm] $ konvergiert $ v [mm] \to [/mm] 1 $

Auf dem Bild, das du skizziert hast, sieht man schon, dass die Intervalle mit zunehmdendem $ i $ immer kleiner werden.

Es ist $ [mm] \bigcup_{i=1}^{\infty} A_i [/mm] = [0;1[ $

Denn durch die Vereinigung aller [mm] $A_i$ [/mm] bildet sich ein neues Intervall, dass aber wegen $ v < 1 - [mm] \frac{1}{2^i} [/mm] $ nur gegen 1 konvergiert.

Grüße
ChopSuey

Bezug
                                
Bezug
Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Di 15.09.2009
Autor: domerich

jetzt wird ein schuh draus.

A1 is mein kleinstes Ai und das kleinste v, was auch immer der v wert bedeutet ist, ist null und also globale unterere schranke.

die obere habe ich vermutlich richtig mit dem limes berechnet?


anhand der skizze soll ich auch erkennen , dass die Ai keine gemeinsamen Schnittmengen haben (von 2 A auf alle geschlossen)?


Bezug
                                        
Bezug
Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Di 15.09.2009
Autor: ChopSuey

Hallo,

ich kann dir leider nicht ganz folgen.

Es ist $ [mm] A_i [/mm] = [mm] \left\lbrace v\ | \ 1-\frac{1}{2^{i-1}} \le v < 1-\frac{1}{2^i} \right\rbrace [/mm] $

Also

$ [mm] A_1 [/mm] = [mm] \left\lbrace \ 0 \le v < \frac{1}{2} \right\rbrace [/mm] $

$ [mm] A_2 [/mm] = [mm] \left\lbrace \ \frac{1}{2} \le v < \frac{3}{4} \right\rbrace [/mm] $

$ [mm] A_3 [/mm] = [mm] \left\lbrace \ \frac{3}{4} \le v < \frac{7}{8} \right\rbrace [/mm] $

Und $ [mm] A_1 \cup A_2 \cup A_3 [/mm]  = [mm] \left[ 0, \frac{1}{2}\right[\ \cup [/mm] \ [mm] \left[\frac{1}{2}, \frac{3}{4}\right[\ \cup [/mm] \ [mm] \left[\frac{3}{4}, \frac{7}{8}\right[ [/mm]  = [mm] \left[0, \frac{7}{8}\right[ [/mm] $

Lässt Du $ i $ nun gegen $ [mm] \infty [/mm] $ laufen, nähert sich die rechte Intervallgrenze entsprechend nahe der 1.

Deshalb $ [mm] \bigcup_{i=1}^{\infty} A_i [/mm] = [0;1[ $

Ausserdem $ [mm] \bigcap_{i=1}^{\infty} A_i [/mm] = [mm] \emptyset [/mm] $

Gruß
ChopSuey

Bezug
                                                
Bezug
Ereignisse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 15.09.2009
Autor: domerich

jetzt hab ichs danke... hatte auch noch einen abschreibfehler :(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de