www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Ergänze zu einer Basis
Ergänze zu einer Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ergänze zu einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 18.11.2010
Autor: sissenge

Aufgabe
Ergänzen Sie [mm] \pmat{ 0 & 0 & 0 \\ 0 & 4&0 } \pmat{1&1&0\\0&-2&4} \pmat{0&0&1\\0&0&2} [/mm]
zu einer Basis von R^(2,3)

Ich habe keine Ahnung wie ich überhaupt anfangen soll...
Also ich muss jetzt auch eine Matrix(???) finden, durch die sich mit Linearkombination die drei Matrizen darstellen lassen????

        
Bezug
Ergänze zu einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Do 18.11.2010
Autor: MathePower

Hallo sissenge,

> Ergänzen Sie [mm]\pmat{ 0 & 0 & 0 \\ 0 & 4&0 } \pmat{1&1&0\\0&-2&4} \pmat{0&0&1\\0&0&2}[/mm]
>  
> zu einer Basis von R^(2,3)
>  Ich habe keine Ahnung wie ich überhaupt anfangen soll...
>  Also ich muss jetzt auch eine Matrix(???) finden, durch
> die sich mit Linearkombination die drei Matrizen darstellen
> lassen????


Finde heraus, welche der Matrizen

[mm]\pmat{1 & 0 & 0 \\ 0 & 0 & 0}, \ \pmat{0 & 1 & 0 \\ 0 & 0 & 0}, \ \pmat{0 & 0 & 1 \\ 0 & 0 & 0}, \ \pmat{0 & 0 & 0 \\ 1 & 0 & 0}, \ \pmat{0 & 0 & 0 \\ 0 & 1 & 0}, \ \pmat{0 & 0 & 0 \\ 0 & 0 & 1}[/mm]

sich durch die gegebenen Matrizen darstellen lassen.


Gruss
MathePower

Bezug
                
Bezug
Ergänze zu einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Fr 19.11.2010
Autor: sissenge

nur [mm] \pmat{0&0&0\\0&4&0} [/mm] = 4* [mm] \pmat{0&0&0\\0&1&0} [/mm]

Oder???

Bezug
                        
Bezug
Ergänze zu einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 05:47 Fr 19.11.2010
Autor: angela.h.b.


> nur [mm]\pmat{0&0&0\\ 0&4&0}[/mm] = 4* [mm]\pmat{0&0&0\\ 0&1&0}[/mm]
>  
> Oder???

Hallo,

ja.

Gruß v. Angela


Bezug
        
Bezug
Ergänze zu einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 06:05 Fr 19.11.2010
Autor: angela.h.b.


> Ergänzen Sie [mm]\pmat{ 0 & 0 & 0 \\ 0 & 4&0 } \pmat{1&1&0\\ 0&-2&4} \pmat{0&0&1\\ 0&0&2}[/mm]
>  
> zu einer Basis von R^(2,3)
>  Ich habe keine Ahnung wie ich überhaupt anfangen soll...
>  Also ich muss jetzt auch eine Matrix(???) finden, durch
> die sich mit Linearkombination die drei Matrizen darstellen
> lassen????

Hallo,

der [mm] \IR^{2,3} [/mm] ist ein VR der Dimension 6.

Die obigen drei Matrizen sind offensichtlich linear unabhängig.
Du mußt nun drei Matrizen finden, mit denen Du sie zu einer Basis des [mm] \IR^{2,3} [/mm] ergänzen kannst.

Die Vektoren Deines Vektorraumes sind nun ja Matrizen.
Ihre lineare unabhängigkeit überprüfst Du, indem Du feststellst, ob die triviale Linearkombination die einzige ist, mit welcher Du die Nullmatrix erzeugen kannst.

Fürs weitere Vorgehen gibt es mehrere Möglichkeiten, ich nenne zwei:

MathePower hatte Dir eine Basis des [mm] \IR^3 [/mm] gezeigt.
Der Basisaustauschsatz/Basisergänzungssatz  garantiert Dir, daß Du in dieser Menge drei Vektoren findest, mit denen Du Deine 3 zu einer Basis ergänzen kannst.
Probiere also, ob Du 3 Vektoren findest, so daß die 6 Vektoren am Ende linear unabhängig sind.

Du kannst auch die gegebenen Vektoren als Koordinatenvektoren bzgl MathePowers Basis schreiben, als Zeilen in eine matrix legen, welche Du auf ZSF bringst. Dann siehst Du leicht, mit welchen Einheitsvektoren Du ergänzen kannst.

Gruß v. Angela









Bezug
                
Bezug
Ergänze zu einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Mi 24.11.2010
Autor: sissenge

ok... also 1. was ist die triviale Linearkombination?? 1.Matrize mal 2.Matrize mal 3.Matrize???

Und dann was meinst du mir :"gegebenen Vektoren als Koordinatenvektoren bzgl MathePowers Basis schreiben"
Heißt das ich schreibe die Matrizen alle "übereinander" und bringe sie dann auf ZSF.

Was ist dann mein Einheitsvektor??

Bezug
                        
Bezug
Ergänze zu einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Do 25.11.2010
Autor: angela.h.b.


> ok... also 1. was ist die triviale Linearkombination??
> 1.Matrize mal 2.Matrize mal 3.Matrize???

Hallo,

das Ding heißt "Matrix".
Eine Matrix, viele Matrizen.
Eine Matrize ist was völlig anderes.

Mannomann, was ein Vektorraum ist, weißt Du? Und was eine Linearkombination ist?

Es geht hier um endliche Linearkombinationen der gestalt

[mm] r_1M_1+r_2M_2+...r_nM_n=0_{\IR^{2,3}}, [/mm] wobei die [mm] r_i [/mm] reelle Zahlen sind und die [mm] M_i [/mm] Matrizen aus V.

Die triviale Linearkombination ist die, bei der der Nullvektor mit [mm] r_1=...=r_n=0 [/mm] erzeugt wird.

>  
> Und dann was meinst du mir :"gegebenen Vektoren als
> Koordinatenvektoren bzgl MathePowers Basis schreiben"

Deiner Frage entnehme ich, daß Koordinatenvektoren noch nicht dran waren bei Euch. Vergiß diesen Weg und mach es wie im 1. Weg vorgeschlagen.

Versuche also, Deine Matrizen zu einer linear unabhängigen Menge mit 6 Elementen zu ergänzen.

Gruß v. Angela


>  Heißt das ich schreibe die Matrizen alle "übereinander"
> und bringe sie dann auf ZSF.
>
> Was ist dann mein Einheitsvektor??


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de