www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Erhaltungsgrößen 3d Oszillator
Erhaltungsgrößen 3d Oszillator < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erhaltungsgrößen 3d Oszillator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:32 So 13.12.2009
Autor: Leipziger

Aufgabe
Die Lagrange-Funktion des dreidimensionalen harmonischen Oszillators ist
L = [mm] \bruch{m}{2}*(x'_{1}^2 [/mm] + [mm] x'_{2}^2 [/mm] + [mm] x'_{3}^2) [/mm] - [mm] \bruch{1}{2}*(k_{1}*x_{1}^2 [/mm] + [mm] k_{2}*x_{2}^2 [/mm] + [mm] k_{3}*x_{3}^2). [/mm]

a)
Analysieren Sie mit Hilfe des Noether-Theorems, welche der Drehimpulskomponenten [mm] L_{i}, [/mm]
i = 1, 2, 3, in Abhängigkeit von der Wahl der Parameter [mm] k_{1}, k_{2}, k_{3} [/mm] Erhaltungsgrößen sind.

b)
Zeigen Sie, daß die Größen
[mm] A_{i}_{j} [/mm] = [mm] \bruch{m}{2}x'_{i}x'_{j} [/mm] + [mm] \bruch{k}{2}x_{i}x_{j}, [/mm] i,j = 1, 2, 3,
im Fall [mm] k_{1} [/mm] = [mm] k_{2} [/mm] = [mm] k_{3} [/mm] = k Erhaltungsgrößen sind und beweisen Sie die Relationen
[mm] A_{i}_{j}^2 [/mm] = [mm] A_{i}_{i}A_{j}_{j} [/mm] - [mm] \bruch{k}{4m}L_{l}^2 [/mm] i, j, l paarweise verschieden.

Hallo,
da ich als angehender Mathematiker theoretische Mechanik nicht unbedingt zu meinen Stärken zählen würde, brauch ich eure Hilfe.

Ich hab absolut keine Ahnung, wie ich an diese Aufgabe herangehen muss.

Ich weiß nur:
I(q,q') = [mm] \summe_{i=1}^{f}\bruch{\partial L}{\partial q'_{i}}\bruch{d}{ds} h^s(q_{i}) [/mm]
an der Stelle s=0 eine Erhaltungsgröße ist.

        
Bezug
Erhaltungsgrößen 3d Oszillator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 So 13.12.2009
Autor: Leipziger

Keiner eine Idee?

Bezug
                
Bezug
Erhaltungsgrößen 3d Oszillator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Mo 14.12.2009
Autor: Leipziger

Mittlerweile habe ich Teil a) fertig, bin aber bei Teil b nachwievor ratlos.

Bezug
        
Bezug
Erhaltungsgrößen 3d Oszillator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 15.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Erhaltungsgrößen 3d Oszillator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mi 16.12.2009
Autor: Doing

Hallo!
Sollte die Frage noch aktuell sein, möchte ich zunächst mal anmerken, dass diese Formulierung des Noether Theorems hier nicht unbedingt am geeignetsten ist, da in der Form zunächst einmal nur eine Aussage bezüglich Transformationen der verallgemeinerten Koordinaten getroffen wird (beim Aufgabenteil b) wird aber mehr benötigt).
Zum Lösen der Aufgabe kann man dann so vorgehen, dass man A zunächst einmal in das Noether Theorem (d.h. in die Gleichung für dei Erhaltungsgöße) einsetzt, und dann ermittelt welches die entsprechenden Transformationen sind, und schließlich überprüft dass die Wirkung unter diesen invariant ist.

Grüße,
Doing

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de