www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Erste Ableitung bilden
Erste Ableitung bilden < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Mi 03.10.2007
Autor: sandra26

Aufgabe
f(x)= [mm] 9x^3+x^6-6+0,5x^4 [/mm]

Benutzen Sie die erste Ableitung unter Benutzung einer geeigneten Ableitungsregel!

Hallo an alle,

kann mir bitte jemand erklären was unter der ERSTEN ABLEITUNG zu verstehen ist. Die Ableitung kann ich mit Hilfe der Potenzregel bilden aber ich weis nicht was ich unter der ersten ableitung verstehen soll.


Potenzregel:

[mm] f(x)=9x^3+x^6-6+0,5x^4 [/mm]

f´(x)= [mm] 27x^2+6x^5+2x^3 [/mm]  

ist mit der ersten Ableitung dieser s.o. Schritt gemeint oder soll ich weiter rechnen


danke im voraus

        
Bezug
Erste Ableitung bilden: einmal abgeleitet
Status: (Antwort) fertig Status 
Datum: 13:36 Mi 03.10.2007
Autor: Loddar

Hallo Sandra!


Alles richtig gemacht! Man redet hier von der ersten Ableitung $f'(x)_$ , da Du die Funktion $f(x)_$ einmal abgeleitet hast. Würdest Du nun diese Ableitung $f'(x)_$ nun nochmals ableiten, erhielt man die zweite Ableitung $f''(x)_$ .


Gruß
Loddar


Bezug
                
Bezug
Erste Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mi 03.10.2007
Autor: sandra26

hallo Loddar,

jetzt habe ich es verstanden danke :) die rechnungen sind leicht, ich habe nur probleme mit den begriffen.

noch eine frage: was müsste ich machen wenn in der aufgabenstellung stehen würde: geben sie die ableitungsfunktion an?

wir würde es dann aussehen?


danke im voraus



Bezug
                        
Bezug
Erste Ableitung bilden: Ableitungsfunktion
Status: (Antwort) fertig Status 
Datum: 13:54 Mi 03.10.2007
Autor: Infinit

Hallo Sandra,
mit Deiner Rechnung hast Du die Ableitungsfunktion der gegebenen Funktion bestimmt. Der Rechenweg wäre also der gleiche. Häufig findet man Ausdrücke wie "Bestimme die Ableitung ...", "Gebe die Ableitungsfunktion an ..." etc.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Erste Ableitung bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Mi 03.10.2007
Autor: sandra26

danke für eure hilfe,


wieso hat man soviele begriffe für einen rechenweg, dadurch verliert man auch den überblick...

danke nochmal :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de