www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Erstellung einer Funktion
Erstellung einer Funktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erstellung einer Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:39 Fr 14.03.2014
Autor: wolfgangmax

Aufgabe
<br>
Geben Sie jeweils den Term einer in R definierten Funktion an, die die angegebenen Eigenschaften hat:
- der Graph der Funktion hat den Hochpunkt in H(0/5)
- der Graph ist an der Stelle x=5 nicht differenzierbar


<br>Leider fehlt die Angabe, welche Art von Funktion hier vorliegt. Ich denke aber, dass wegen der 2. Eigenschaft eine gebrochen-rationale Funktion vorliegt.
Nun überlege ich die ganze Zeit, wie eine gerochen-rationale Funktion beschaffen sein muss, damit überhaupt ein Extremum (hier: Hochpunkt) entsteht.
Auch mit dem Modelling (Steckbriefaufgabe)komme ich nicht weiter, denn ich weiß ja nicht, von welcher allgemeinen Funktion ich ausgehen muss.

Diese (Teil-) Aufgabe stammt aus einer Abiturklausur des Jahres 2012.

Über einen Tipp wäre ich sehr dankbar!
Mit freundlichen Grüßen

 

        
Bezug
Erstellung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Fr 14.03.2014
Autor: leduart

Hallo
erstens erfüllt  f(x)= [mm] -ax^2+5 [/mm] a)>0 2. erfüllt etwas mit Knick bei x=5, also etwa Betrag f und f(5)=0
Gruss leduart

Bezug
        
Bezug
Erstellung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Fr 14.03.2014
Autor: Sax

Hi,

wenn du aber (was komplizierter ist als Leduarts Vorschlag) gerne eine gebrochen rationale Funktion hättest, dann kannst du folgendermaßen vorgehen :
Der Nenner sollte n(x) = x-5 sein, das garantiert die Nicht-Differenzierbarkeit, weil der Bruch dann für x=5 ja noch nicht einmal definiert ist.
Als Zähler musst du eine Funktion von mindesens Grad 2 nehmen, damit sich ein Extremum ergibt : [mm] z(x)=ax^2+bx+c. [/mm] a kann willkürlich a=1 gesetzt werden. c muss -25 sein, damit f(0)=5 wird. b ergibt sich aus der Bedingung, dass f'(0)=0 sein muss (zu b=5). Dass dann an der Stelle x=0 tatsächlich ein Hochpunkt vorliegt, muss noch nachgerechnet werden. Damit die Funktion auf ganz [mm] \IR [/mm] definiert ist, ist noch eine beliebige Definition für x=5 hinzuzufügen.

Anmerkung : Vielleicht bedeutet das "jeweils" in der Aufgabenstellung, dass zwei verschiedene Funktionen (je eine für jede Bedingung) angegeben werden dürfen ? Das würde die Sache natürlich erheblich vereinfachen.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de