Erw. Länge von proj. Vektor < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:36 Mo 16.10.2017 | Autor: | Teufel |
Aufgabe | Sei [mm] $R\in\IR^{n\times k}$ [/mm] eine zufällige Matrix, in der die $k$ Spalten eine orthonormale Basis bilden. Zeige: [mm] $\forall u\in\IR^n\colon\mathbb{E}(\|\sqrt{\frac{n}{k}}R^Tu\|^2)=\|u\|^2$ [/mm] |
Hallo, Leute!
Es geht darum zu zeigen, dass ein in einen zufälligen Unterraum projizierter und dann skalierter Vektor die Länge beibehält. Meine Gedanken dazu: Der Fall $k=n$ ist einfach, da man [mm] $R^TR=I_n$ [/mm] ausnutzen kann. Hier gilt die Aussage sogar ohne den Erwartungswert.
Da ich jetzt nicht weiter weiß, wollte ich erst mal den Spezialfall [mm] $u=e_1=(1,0,0,\ldots,0)$ [/mm] betrachten. Natürlich gilt dann [mm] $\|e_1\|^2=1$, [/mm] aber mir gelingt es nicht zu zeigen, warum [mm] $\mathbb{E}(\|\sqrt{\frac{n}{k}}R^Te_1\|^2)=1 \gdw \mathbb{E}(\|R^Te_1\|^2)=\frac{k}{n}$ [/mm] sein soll, obwohl es doch eigentlich nicht so schwierig sein sollte.
Weiß jemand Rat? Vielen Dank!
|
|
|
|
> Sei [mm]R\in\IR^{n\times k}[/mm] eine zufällige Matrix, in der die
> [mm]k[/mm] Spalten eine orthonormale Basis bilden. Zeige: [mm]\forall u\in\IR^n\colon\mathbb{E}(\|\sqrt{\frac{n}{k}}R^Tu\|^2)=\|u\|^2[/mm]
>
> Hallo, Leute!
>
> Es geht darum zu zeigen, dass ein in einen zufälligen
> Unterraum projizierter und dann skalierter Vektor die
> Länge beibehält. Meine Gedanken dazu: Der Fall [mm]k=n[/mm] ist
> einfach, da man [mm]R^TR=I_n[/mm] ausnutzen kann. Hier gilt die
> Aussage sogar ohne den Erwartungswert.
>
> Da ich jetzt nicht weiter weiß, wollte ich erst mal den
> Spezialfall [mm]u=e_1=(1,0,0,\ldots,0)[/mm] betrachten. Natürlich
> gilt dann [mm]\|e_1\|^2=1[/mm], aber mir gelingt es nicht zu zeigen,
> warum [mm]\mathbb{E}(\|\sqrt{\frac{n}{k}}R^Te_1\|^2)=1 \gdw \mathbb{E}(\|R^Te_1\|^2)=\frac{k}{n}[/mm]
> sein soll, obwohl es doch eigentlich nicht so schwierig
> sein sollte.
Hallo,
so einfach finde ich die Sache nicht. Erstmal musst du zufällige Matrix spezifizieren, d.h. sagen, welche Wahrscheinlichkeitsverteilung du betrachtest. Ich würde es wie folgt versuchen:
Sei oBdA [mm]\|u\|=1[/mm]. Ergänze die Spalten von R zu einer Orthonormalbasis des [mm]\mathbb{R}^n[/mm] und erhalte so die quadratische Matrix [mm]\hat{R}[/mm].
[mm]v=\hat{R}^Tu[/mm] ist dann ein zufälliger Einheitsvektor, dessen erste Komponenten [mm]v_1,...,v_k[/mm] den Vektor [mm]R^Tu[/mm] bilden. Es ist [mm]1=E\|v\|^2=\sum_{j=1}^nEv_j^2[/mm]. Unter vernünfigten Annahmen an die Verteilung (Symmetrie bezüglich der Komponenten) folgt dann [mm]Ev_j^2=\frac 1n[/mm] für alle j und daraus das Gewünschte.
>
> Weiß jemand Rat? Vielen Dank!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:00 Mo 16.10.2017 | Autor: | Teufel |
Hi!
Sorry, $R$ soll uniform zufällig gewählt sein. Deine Lösung sieht gut aus! Die Frage ist halt nur noch, wie die Komponenten verteilt sind. Aber das hilft schon mal sehr, vielen Dank!
|
|
|
|
|
Ich versuche mal eine geometrisch-anschauliche Argumentation:
Wir sind im [mm] \IR^n [/mm] mit der Standardbasis und haben einen beliebigen Vektor u aus [mm] \IR^n. [/mm] Das Produkt eines Basisvektors [mm] e_s [/mm] mit u gibt die s-te Komponente von u, quadriert man alle solchen Produkte und summiert sie auf, gibt das gerade [mm] ||u||^2. [/mm] Wegen der Zufälligkeit von u folgt mit der Tatsache, dass keine Komponente gegenüber einer anderen bevorzugt ist, dass jedes Produkt [mm] e_s*u [/mm] nach dem Quadrieren im Durchschnitt (=Erwartungswert) den selben Beitrag zu dieser Summe, also [mm] ||u||^2/n, [/mm] liefert.
Bildet man nur mit einer Anzahl k<n die Produkte, ergibt diese Summe nur k statt n Summanden und daher imn Mittel nur den Wert [mm] ||u||^2*k/n.
[/mm]
Dieser Vorgang lässt sich beschreiben durch das Produkt der Matrix [mm] E_k*u, [/mm] wobei [mm] E_k [/mm] zunächst die Einheitsmatrix ist, bei der dann von den n Zeilen so viele (beliebig) gestrichen wurden, dass nur k übrig geblieben sind, wobei die k auch noch beliebig vertauscht wurden. Dann enthält [mm] E_k*u [/mm] genau k Komponenten und hat im Mittel den Wert [mm] ||u||^2*k/n.
[/mm]
Ersetzt man nun die orthonormalen Vektoren aus [mm] E_k [/mm] durch andere Orthonormalvektoren, entspricht dies nur einer Drehung des Koordinaten"kreuzes" im Raum. Man erhält so [mm] R^T [/mm] und berechnet nun [mm] R^T*u. [/mm] Dreht man das "Kreuz" anschließend - nun mit dem Vektor u - wieder zurück, kann man wieder mit [mm] E_k, [/mm] allerdings einem verdrehten u, nennen wir es v, rechnen. Dann ist [mm] R^T*u=E_k*v. [/mm] Da aber u beliebig war, liefern die nun "verdrehten" us, also die beliebigen vs, im Mittel wieder den selben Wert [mm] ||u||^2*k/n, [/mm] da jeweils ||u|| = ||v|| ist.
|
|
|
|