www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartete Dauer von bubbles
Erwartete Dauer von bubbles < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartete Dauer von bubbles: Frage
Status: (Frage) beantwortet Status 
Datum: 20:19 So 17.04.2005
Autor: Hans23

Hallo zusammen.
Ich studiere Wirtschaft und bin gerade dabei eine Seminararbeit zu verfassen. Die Arbeit behandelt Spekulationsblasen in Aktienkursen, wie z.B. die Nemax Blase im Jahr 2000. Die mir zugrunde liegende Literatur ist sehr theoretisch und nur mit wenigen Herleitungen versehen. Nun zum Thema:
Das Grundproblem ist , wie man von Wahrscheinlichkeiten auf die erwartete Dauer einer Blase schliessen kann. Die Wahrscheinlichkeit, dass eine Blase in der nächsten Peridoe " t+1" platzt sei  [mm] \pi [/mm] . Laut dem Text ergibt sich die erwartete "Lebens-"Dauer der Blase dann als   [mm] \bruch{1}{ \pi} [/mm]  .Dieser Zusammenhang sit mir nicht klar.
Klar ist mir, dass wenn die Platzw´keit  [mm] \pi [/mm] beträgt, dann die Nichtplatzw´keit 1 -  [mm] \pi [/mm] beträgt. Somit ergibt die w´keit fürs Platzen in Peridoe "t+3" als  (1- [mm] \pi)^2 [/mm]   [mm] \times \pi [/mm] . Die Blase dauert dann eben 3 Perioden an.
Die W´keit fürs Platzen in Periode "t+j" ergibt sich dann als:  (1- [mm] \pi)^{j-1} [/mm]   [mm] \times \pi [/mm]  . Diese Blase dauert dann j Perioden an.

Somit müsste sich doch die erwartete Dauer einer Blase ergeben als:
   [mm] \summe_{j=1}^{ \infty} [/mm] j   [mm] \times(1- \pi)^{j-1} [/mm]   [mm] \times \pi [/mm]

Wie kommt man dann bitte auf das Ergebnis, dass die Blase eine erwartete Lebensdauer von
[mm] \bruch{1}{ \pi} [/mm]   hat??

Für Eure Hilfe wäre ich sehr dankbar.   Hans23
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartete Dauer von bubbles: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 So 17.04.2005
Autor: Brigitte

Hallo Johannes!

[willkommenmr]

>  Das Grundproblem ist , wie man von Wahrscheinlichkeiten
> auf die erwartete Dauer einer Blase schliessen kann. Die
> Wahrscheinlichkeit, dass eine Blase in der nächsten Peridoe
> " t+1" platzt sei  [mm]\pi[/mm] . Laut dem Text ergibt sich die
> erwartete "Lebens-"Dauer der Blase dann als   [mm]\bruch{1}{ \pi}[/mm]
>  .Dieser Zusammenhang sit mir nicht klar.
>  Klar ist mir, dass wenn die Platzw´keit  [mm]\pi[/mm] beträgt, dann
> die Nichtplatzw´keit 1 -  [mm]\pi[/mm] beträgt. Somit ergibt die
> w´keit fürs Platzen in Peridoe "t+3" als  (1- [mm]\pi)^2[/mm]  
> [mm]\times \pi[/mm] . Die Blase dauert dann eben 3 Perioden an.
> Die W´keit fürs Platzen in Periode "t+j" ergibt sich dann
> als:  (1- [mm]\pi)^{j-1}[/mm]   [mm]\times \pi[/mm]  . Diese Blase dauert
> dann j Perioden an.
>  
> Somit müsste sich doch die erwartete Dauer einer Blase
> ergeben als:
>     [mm]\summe_{j=1}^{ \infty}[/mm] j   [mm]\times(1- \pi)^{j-1}[/mm]  
> [mm]\times \pi[/mm]

[ok] völlig richtig. Hier gibt es zwei Möglichkeiten weiterzumachen. Entweder Du erkennst/glaubst, dass hier die sogenannte geometrische Verteilung vorliegt und diese als Erwartungswert genau den Kehrwert der "Erfolgswahrscheinlichkeit" (hier Wkt. für Platzen) besitzt, oder - und ich habe den Eindruck, dass das für Dich eher hilfreich ist - wir rechnen die Reihe einfach aus:

Für die geometrische Reihe gilt ja (mit 0<p<1)

[mm]\sum\limits_{j=0}^\infty p^j=\frac{1}{1-p}.[/mm]

Differenziert man nun auf beiden Seiten nach p, ergibt sich

[mm]\sum\limits_{j=1}^\infty j\cdot p^{j-1}=-\frac{1}{(1-p)^2}\cdot (-1)=\frac{1}{(1-p)^2}.[/mm]

(Der Summand für j=0 ist ja ohnehin 0.)
Verwendet man dieses Ergebnis mit [mm] $p=1-\pi$, [/mm] folgt aus obiger Formel

[mm]\summe_{j=1}^{ \infty} j \cdot (1- \pi)^{j-1}\cdot \pi=\pi\summe_{j=1}^{ \infty} j \cdot (1- \pi)^{j-1}=\pi\cdot \frac{1}{\pi^2}=\frac{1}{\pi}.[/mm]

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de