www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungstreue zeigen
Erwartungstreue zeigen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Fr 21.06.2013
Autor: chr1s1

Aufgabe
Betrachten n unabhängige Bernoulli(p) Zufallsvariablen [mm] X_{1},...,X_{n}. [/mm]
d.h. [mm] P[X_{i}=1]=1-P[X_{i}=0]=p [/mm]
[mm] \overline{X}=\bruch{1}{n}\summe_{i=1}^{n}X_{i} [/mm]

Um die Varianz p(1-p) zu schätzen betrachten wir den Schätzer [mm] T=\overline{X}(1-\overline{X}) [/mm]
a) zeige T ist nicht erwartungstreu
b) konstruiere erwartungstreuen Schätzer T' proportional zu T

zu a)
[mm] E(T)=E(\overline{X}-\overline{X}^2)=E(\overline{X})-E(\overline{X}^2) [/mm]

ich habe schon berechnet, dass gilt [mm] E(\overline{X})=p, [/mm] daher berechne ich noch

[mm] E(\overline{X}^2)=E((\bruch{1}{n}\summe_{i=1}^{n}X_{i})^2)=\bruch{1}{n^2}E((\summe_{i=1}^{n}X_{i})^2)=\bruch{1}{n^2}\summe_{i=1}^{n}\summe_{j=1}^{n}E(X_{i}X_{j})=\bruch{1}{n^2}\summe_{i=1}^{n}\summe_{j=1}^{n}E(X_{i})E(X_{j})=\bruch{1}{n^2}*n^2*p^2=p^2 [/mm]

daraus folgt dann E(T)=p(1-p) und dann wäre T ja erwartungstreu??
wo ist mein Fehler??

Danke schonmal
LG



        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 21.06.2013
Autor: luis52

Moin

> [mm]E(\overline{X}^2)=E((\bruch{1}{n}\summe_{i=1}^{n}X_{i})^2)=\bruch{1}{n^2}E((\summe_{i=1}^{n}X_{i})^2)=\bruch{1}{n^2}\summe_{i=1}^{n}\summe_{j=1}^{n}E(X_{i}X_{j})=\bruch{1}{n^2}\summe_{i=1}^{n}\summe_{j=1}^{n}E(X_{i})E(X_{j})=\bruch{1}{n^2}*n^2*p^2=p^2[/mm]
>  
>

In der Summe [mm] $\bruch{1}{n^2}\summe_{i=1}^{n}\summe_{j=1}^{n}E(X_{i}X_{j})$ [/mm] steckt [mm] $E[X_1X_1]=E[X_1^2]=E[X_i]=p \ne p^2$. [/mm]

vg Luis

Bezug
                
Bezug
Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Fr 21.06.2013
Autor: chr1s1

oke danke!

kannst du mir vielleicht zu b) einen tipp geben?
da finde ich leider keinen geeignete erwartungstreuen schätzer...

LG

Bezug
                        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Fr 21.06.2013
Autor: luis52


>  
> kannst du mir vielleicht zu b) einen tipp geben?
>  da finde ich leider keinen geeignete erwartungstreuen
> schätzer...


Mit $ [mm] T=\overline{X}(1-\overline{X}) [/mm] $ hat man dir (den stets fuer die Varianz verzerrten) Schaetzer [mm] $S^2=\sum_{i=1}^n(X_i-\bar X)^2/n$ [/mm] serviert. Hingegen ist  [mm] $\tilde S^2=\sum_{i=1}^n(X_i-\bar X)^2/(n-1)$ [/mm] unverzerrt. Konkret ergibt sich

[mm] $\tilde S^2=\frac{n}{n-1}S^2=\frac{n}{n-1}\bar X(1-\bar [/mm] X)$.

vg Luis

Bezug
                                
Bezug
Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Sa 22.06.2013
Autor: chr1s1

oke danke für die Antwort

wenn ich aber
[mm] E(\frac{n}{n-1}\overline{X}(1- \overline{X})) [/mm]
nachrechne komme ich doch als Ergebnis auf 0?

Weil [mm] E(\overline{X}(1- \overline{X}))=0 [/mm]

Bezug
                                        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 22.06.2013
Autor: luis52


>
>  
> Weil [mm]E(\overline{X}(1- \overline{X}))=0[/mm]  

Eine kuehne Behauptung! ;-)

*Ich* rechne so:

[mm] $E[\overline{X}(1- \overline{X})]=E[\overline{X}]- E[\overline{X}^2]=E[\overline{X}]- (Var[\bar X]+E[\overline{X}]^2)=...$ [/mm]

vg Luis


Bezug
                                                
Bezug
Erwartungstreue zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 So 23.06.2013
Autor: chr1s1

gut so funktioniert es besser :)

danke luis

LG

Bezug
                                
Bezug
Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 So 23.06.2013
Autor: Lu-

Warum ist T = [mm] S^2 [/mm] ?

Liebe Grüße

Bezug
                                        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 23.06.2013
Autor: steppenhahn

Hallo,

einfach nachrechnen. Diese Formel gilt aber NUR für Bernoulli-verteilte Zufallsvariablen.

[mm] $\frac{1}{n}\sum_{i=1}^{n}(X_i [/mm] - [mm] \overline{X})^2 [/mm] = [mm] \frac{1}{n}\sum_{i=1}^{n}(X_i^2 [/mm] - 2 [mm] X_i \overline{X} [/mm] + [mm] \overline{X}^2) [/mm] = [mm] \frac{1}{n}\sum_{i=1}^{n}X_i^2 [/mm] - [mm] \overline{X}^2$, [/mm]

Nun ist [mm] $X_i^2 [/mm] = [mm] X_i$ [/mm] wegen Bernoulli-Verteilung.

$= [mm] \overline{X} [/mm] - [mm] \overline{X}^2$. [/mm]

Viele Grüße,
Stefan

Bezug
                                                
Bezug
Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 So 23.06.2013
Autor: Lu-

Hallo
Wie kommst du zum dritten Schritt=??
(also zweite Gleichheitszeichen)

> $ [mm] \frac{1}{n}\sum_{i=1}^{n}(X_i [/mm] - [mm] \overline{X})^2 [/mm] = [mm] \frac{1}{n}\sum_{i=1}^{n}(X_i^2 [/mm] - 2 [mm] X_i \overline{X} [/mm] + [mm] \overline{X}^2) [/mm] = [mm] \frac{1}{n}\sum_{i=1}^{n}X_i^2 [/mm] - [mm] \overline{X}^2 [/mm] $,

LG

Bezug
                                                        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 So 23.06.2013
Autor: luis52


> Hallo
>  Wie kommst du zum dritten Schritt=??
>  (also zweite Gleichheitszeichen)
>  

Ich wuerde das vielleicht etwas anders zeigen als Stefan:


$ [mm] \frac{1}{n}\sum_{i=1}^{n}(X_i [/mm] - [mm] \overline{X})^2 =\frac{1}{n}\sum_{i=1}^{n}X_i(X_i [/mm] - [mm] \overline{X})-\overline{X}\frac{1}{n}\underbrace{\sum_{i=1}^{n}(X_i - \overline{X})}_{=0} [/mm]  = [mm] \frac{1}{n}\sum_{i=1}^{n}X_i^2 [/mm] - [mm] \overline{X}^2 [/mm] $.

vg Luis



Bezug
                                                                
Bezug
Erwartungstreue zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 So 23.06.2013
Autor: Lu-

danke*

Bezug
                                                
Bezug
Erwartungstreue zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 So 23.06.2013
Autor: Lu-

Hallo,
Ich habe noch eine kleine Frage: Nun ist $ [mm] X_i^2 [/mm] = [mm] X_i [/mm] $ wegen Bernoulli-Verteilung.
Ich hab das nicht geschafft zu zeigen, hab ihr da noch einen kleinen Hinweis für mich?

Bezug
                                                        
Bezug
Erwartungstreue zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 23.06.2013
Autor: steppenhahn

Hallo,

> Hallo,
>  Ich habe noch eine kleine Frage: Nun ist [mm]X_i^2 = X_i[/mm] wegen
> Bernoulli-Verteilung.
>  Ich hab das nicht geschafft zu zeigen, hab ihr da noch
> einen kleinen Hinweis für mich?

Wenn [mm] X_i [/mm] Bernoulli-verteilt ist, dann kann [mm] X_i [/mm] nur die Werte 0 und 1 annehmen. Aber es gilt [mm] 0^2 [/mm] = 0 und [mm] 1^2 [/mm] = 1.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de