www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Erwartungstreuer Schätzer
Erwartungstreuer Schätzer < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungstreuer Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Fr 18.07.2014
Autor: Trikolon

Aufgabe
Es seinen  [mm] X_1,...,X_ [/mm] unabhängige Bernoulli-verteilte Zufallsvariablen mit unbekanntem Parameter p [mm] \in [/mm] [0,1].
Untersuche ob der Schätzer T ein erwartungstreuer Schätzer für [mm] p^2 [/mm] ist.
T= [mm] \bruch{1}{n(n-1)} [/mm] ( ( [mm] \summe_{i=1}^{n} X_i)^2 [/mm] - [mm] (\summe_{j=1}^{n} X_j)) [/mm]

E(T)= [mm] \bruch{1}{n(n-1)} [/mm] E(( [mm] \summe_{i=1}^{n} X_i)^2 [/mm] - [mm] (\summe_{j=1}^{n} X_j)) [/mm] = [mm] \bruch{1}{n(n-1)} (E(\summe_{i=1}^{n} X_i)^2) [/mm] - [mm] np^2) [/mm]
= [mm] \bruch{1}{n(n-1)} (np^2 (1-p^2)+n^2p^4-np^2 [/mm] )= [mm] p^4. [/mm] Also ist T kein erwartungstreuer Schätzer. Ist das so ok?

        
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Sa 19.07.2014
Autor: luis52

> Es seinen  [mm]X_1,...,X_[/mm] unabhängige Bernoulli-verteilte
> Zufallsvariablen mit unbekanntem Parameter p [mm]\in[/mm] [0,1].
>  Untersuche ob der Schätzer T ein erwartungstreuer
> Schätzer für [mm]p^2[/mm] ist.
>  T= [mm]\bruch{1}{n(n-1)}[/mm] ( ( [mm]\summe_{i=1}^{n} X_i)^2[/mm] -
> [mm](\summe_{j=1}^{n} X_j))[/mm]
>  E(T)= [mm]\bruch{1}{n(n-1)}[/mm] E((
> [mm]\summe_{i=1}^{n} X_i)^2[/mm] - [mm](\summe_{j=1}^{n} X_j))[/mm] =
> [mm]\bruch{1}{n(n-1)} (E(\summe_{i=1}^{n} X_i)^2)[/mm] - [mm]np^2)[/mm]
> = [mm]\bruch{1}{n(n-1)} (np^2 (1-p^2)+n^2p^4-np^2[/mm] )= [mm]p^4.[/mm] Also
> ist T kein erwartungstreuer Schätzer. Ist das so ok?

Nein, z.B. ist [mm] $E[\sum X_i]\ne np^2$. [/mm]




Bezug
                
Bezug
Erwartungstreuer Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:37 Sa 19.07.2014
Autor: Trikolon

Ich dachte man muesste hier als EW [mm] np^2 [/mm] statt np nehmen,  weil man ja den schaetzer für [mm] p^2 [/mm] bestimmen will

Bezug
                        
Bezug
Erwartungstreuer Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 19.07.2014
Autor: Trikolon

Der vorherige Post war eigentlich eine Frage, auch wenn er als Mitteilung deklariert wurde.

Bezug
                                
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 19.07.2014
Autor: luis52

ich sehe keine Frage, sondern nur eine fragwuerdige Feststellung. Es gilt $ [mm] E[\sum X_i]= [/mm] np$, also ist deine Rechnung falsch.


Bezug
        
Bezug
Erwartungstreuer Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Sa 19.07.2014
Autor: Trikolon

Also obwohl gefragt ist ob das ein schaetzer für [mm] p^2 [/mm] ist, rechne ich es ganz normal durch und gucke ob [mm] p^2 [/mm] heraus kommt?

Bezug
                
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Sa 19.07.2014
Autor: luis52


> Also obwohl gefragt ist ob das ein schaetzer für [mm]p^2[/mm] ist,
> rechne ich es ganz normal durch und gucke ob [mm]p^2[/mm] heraus
> kommt?

Jep.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de