www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Do 04.10.2007
Autor: sky_7

Hallo
Ich hab ne Aufgabe,ich komm leider nicht weiter
Insgesamt hat ein Händler 60 packungen und verkauft die bei  verschiedene wahrscheinlichkeiten
ich hab für Mittelwert 25 (packungen) raus und nun er verdient an einer Packung 0,40 cent und an einer nicht verkauften Packung hat er 1,00 euro verlust.Bei welcher Bestellmenge kann er den größten Gewinn erwarten?

wäre sehr nett,wenn jemand mir weiterhilft.

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Fr 05.10.2007
Autor: DirkG

Die Gewinnfunktion $G(b,x)$ bei bestellter Menge $b$ und nachgefragter Menge $x$ ist offenbar
$$G(b,x) = [mm] \begin{cases} 0.4b & \;\mbox{für}\; x\geq b\\ 0.4x-(b-x) & \;\mbox{für}\; x< b\end{cases} \; [/mm] ,$$
denn im ersten Fall kann er die gesamte Bestellmenge verkaufen, im zweiten Fall hingegen bleiben $b-x$ Packungen übrig, mit entsprechenden Unkosten, die den Gewinn $0.4x$ schmälern.

Kennzeichnet nun $X$ die zufällige Nachfrage, dann ist der Erwartungswert $E(G(b,X)) =: g(b)$ der zu erwartende Gewinn - den musst du erstmal in Abhängigkeit von $b$ berechnen! Der von dir angegebene Erwartungswert $E(X)$ allein nützt dir da nicht viel, da $G(b,X)$ keine lineare Funktion in $X$ ist. Du musst also schon mit der gesamten Verteilung von $X$ rausrücken, nicht nur mit dem Erwartungswert!!!

Wenn du dann schließlich $g(b)$ ermittelt hast, verbleibt noch die Maximierung bzgl. $b$.


Gruß,
Dirk



EDIT: Beim nochmaligen Lesen stutze ich gerade: Meinst du wirklich 0.40 Cent Gewinn bzw. 1.00 Euro Verlust je Packung? Nicht beidesmal Cent bzw. beidesmal Euro? Wenn du dich also oben nicht verschrieben hast, dann muss ich mich korrigieren bei der Gewinnfunktion, die lautet dann nämlich in Cent ausgedrückt

$$G(b,x) = [mm] \begin{cases} 0.4b & \;\mbox{für}\; x\geq b\\ 0.4x-100(b-x) & \;\mbox{für}\; x< b\end{cases} \; [/mm] ,$$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de