www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 16.05.2009
Autor: stochastikniete

Aufgabe
Es sei X die Zufallsgröße "Länge der längsten Serie beim fünfmaligen Münzwurf". Berechnen Sie
1) E(X)
2) E(X²)
3) E(1/X)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die längste Serie beim fündmaligen Münzwurf ist
K= Kopf Z= Zahl

(KKKKK) oder (ZZZZZ)
beide haben jeweils eine Wahscheinlichkeit von 1/32

Die Formel für E lautet: [mm] E(X)=\summe_{w aus Omega} [/mm] x(w)*p(w)

Wenn ich jetzt eine Tabelle anlege:

w=    (ZZZZZ)   (KKKKK)
p(w)= 1/32       1/32
X(w)=  5             5

stimmt das X(w)?
Und bedeutet das für mein
E(X) = 1/32*(5+5)= 5/16
E(X²)= 1/32*(25+25)=1 9/16
E(1/X)= 1/32*(1/5*1/5)=1/80
????

Danke für die HIlfe!

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 16.05.2009
Autor: Gonozal_IX

Hiho,

ich glaub du hast die Zufallsvariable falsch aufgefasst.
Also sicherlich ist die längste mögliche Serie 5 gleiche, aber die Zufallsvariable macht folgendes.

Sie nimmt einen 5maligen Münzwurf und gibt dir die Länge der längsten Serie.
Also ein paar Beispiele:

X((k,k,z,k,z)) = 2

X((z,z,k,k,k)) = 3

X((z,k,z,k,z)) = 1

X((z,z,z,k,k)) = 3

D,h.

X: [mm] \{0,1\}^5 \to \{0,1,2,3,4,5\} [/mm]

Und nun sollst du E[X] berechen.
Das Urbild zur 1 sind natürlich nur 2 Elemente, welche?
Wieviele Elemente hat denn der 5 malige Münzwurf?

Davon sollst du nun E[X] berechnen.

MFG,
Gono.

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 So 17.05.2009
Autor: stochastikniete

also ich habe 32 Elemente beim fünfmaligen Münzwurf.

jetzt muss ich gucken, wie oft Z oder K hintereinander stehen und das ist dann meine längste Serie.
heißt ZZKKK = 3
oder KKZKK = 2

dann rechne ich zusammen wie oft die 3 und wie oft die 2 als ergebnis rauskommt. und erhalte damit die Wahrscheinlichkeit. P(X=3)= x*3/32
das mach ich für jede Zahl und setze es nachher in die Formel ein. Richtig?

Und ZZKKK wird nur für =3 gewertet nicht für =2 (da zwei ZZ auch eine Serie sind?

lg

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 So 17.05.2009
Autor: Gonozal_IX


> also ich habe 32 Elemente beim fünfmaligen Münzwurf.

[ok]

>  
> jetzt muss ich gucken, wie oft Z oder K hintereinander
> stehen und das ist dann meine längste Serie.
>  heißt ZZKKK = 3
>  oder KKZKK = 2

Genauer X(...) = 3

> dann rechne ich zusammen wie oft die 3 und wie oft die 2
> als ergebnis rauskommt. und erhalte damit die
> Wahrscheinlichkeit. P(X=3)= x*3/32

Warum [mm] \bruch{3}{32}? [/mm] Für welche Tupel w gilt denn X(w) = 3 ?

>  das mach ich für jede Zahl und setze es nachher in die
> Formel ein. Richtig?

Jop.

>  
> Und ZZKKK wird nur für =3 gewertet nicht für =2 (da zwei ZZ
> auch eine Serie sind?)

Genau, denn X(zzkkk) = 3 und NICHT 2, weil nur die Längste Serie gewertet wird.

Als Tip noch: Schau dir zuerst die Urbilder zu 1,3,4,5 an und berechne (wie?) daraus das Urbild zur 2.
Warum ist dieses Vorgehen sinnvoll?


Bezug
                                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 So 17.05.2009
Autor: stochastikniete

also hab ich für E(X)= 1*2/32+2*14/32+3*10/32+4*4/32+5*2/32 =2*11/16

für E(X²)= 1²*2/32+2²*14/32...=8*3/16

für E(1/X) =1/1*2/32+2/1*14/32...=103/240

ja?!

Bezug
                                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 So 17.05.2009
Autor: Gonozal_IX

Hm

als erstes: Nutze bitte den Formeleditor, das macht das lesen wesentlich einfacher.

Zweitens: Wie kommst du auf [mm] 3*\bruch{10}{32} [/mm] bei E[X]?

MfG,
Gono.

Bezug
                                                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 So 17.05.2009
Autor: stochastikniete

Es gibt 10 Variationen für X=3
(KKZZZ)(ZZKKK)(KKKZZ)(ZKKKZ)(KZKKK)(ZZZKK)(ZZZKZ)(KZZZK)(ZKZZZ)(KKZZZ)
also [mm] \bruch{10}{32} [/mm]

das hab ich mit den anderen X=1(2,4,5) auch gemacht. nachgezählt und dann in E(X) eingesetzt.
also [mm] 3*\bruch{10}{32} [/mm]

ist das falsch?

Bezug
                                                        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 So 17.05.2009
Autor: Gonozal_IX

Nein das passt schon, ich hatte nur selbst einige Kombinationen vergessen und wollte wissen welche ;-)

Das Vorgehen stimmt soweit, wenn du dich nicht verrechnet hast, müsste es jetzt stimmen.

Bezug
                                                                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 So 17.05.2009
Autor: stochastikniete

juchuh... danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de