www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert Brownsche Beweg
Erwartungswert Brownsche Beweg < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Brownsche Beweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Di 30.06.2009
Autor: honey

Hallo,
für eine Ausarbeitung sitzte ich gerade an einem Beweis, bei dem ich leider den Knackpunkt nicht verstehe.
Ich muss zeigen, dass
E[mm] (\left| B(1) \right|^{-\alpha})=\int_{-\infty}^{\infty}\bruch{1}{\wurzel{2\pi}^d}\bruch{1}{{\left|z \right|^{\alpha}}} e^\bruch{-\left|z \right|^2}{2}\, dz [/mm]
endlich, also eine Konstante, abhängig von der Dimension d und [mm]\alpha[/mm] ist.
Für [mm] \left|z \right|^{-\alpha}\le1[/mm] wäre das Integral doch von oben durch [mm]\bruch{\wurzel{\pi}}{\wurzel{2\pi}^d}[/mm] beschränkt oder habe ich da einen Denkfehler?
Wie kann ich denn für die anderen z argumentieren?

Danke schonmal im Voraus,
honey


        
Bezug
Erwartungswert Brownsche Beweg: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Mi 01.07.2009
Autor: wauwau

Also es genügt im wesentlichen zu zeigen

[mm] \integral_{1}^{n}{e^\bruch{-x^2}{2} dx} [/mm] ist gleichmäßig beschränkt für alle n

(wegen Symmetrie des Integranden und Beschränktheit des Integranden im endl. Intervall [0,1])

der integrand ist aber in [1,n] stets kleiner als
[mm]xe^\bruch{-x^2}{2}[/mm]

und das Integral über diesen integranden kannst du explizit berechnen.
Dann zeigst du das Ergebnis beschränkt ist....

Bezug
                
Bezug
Erwartungswert Brownsche Beweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 Mi 01.07.2009
Autor: honey

Hi und Danke für die Antwort.
Dass für
[mm]\left| z \right|^{-\alpha}\le1[/mm] also für [mm]\left| z \right|\ge1[/mm] das Integral beschränkt ist war mir  klar. Wie zeige ich es denn für das Intervall [-1,1] bzw aus Symmetriegründen [0,1] ?

Lg honey

Bezug
                        
Bezug
Erwartungswert Brownsche Beweg: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 01.07.2009
Autor: wauwau

wenn, was sicher der Fall ist
[mm]0 \le \alpha < 1 [/mm] gilt, kannst du den Integranden ja in [0,1] durch
[mm] C.z^{-\alpha}[/mm] mit geeignetem C
abschätzen

ist [mm] \alpha [/mm] größer 1 geht in diesem Intervall die Endlichkeit flöten

Bezug
                                
Bezug
Erwartungswert Brownsche Beweg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mi 01.07.2009
Autor: honey

Hi,
leider ist [mm]0<\alpha<2[/mm]

Lg honey

Bezug
                                        
Bezug
Erwartungswert Brownsche Beweg: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mi 01.07.2009
Autor: wauwau

dann ist das Integral in [0,1] aber nicht mehr beschränkt, da die Abschätzung von vorher nach Integration was Unlimitiertes liefert..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de