www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert/Dichtefunktion
Erwartungswert/Dichtefunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert/Dichtefunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 22.01.2008
Autor: bobby

Hallo!

Ich hab leider ein riesiges Problem mit dieser Aufgabe:

Auf der Kreisfläche K={ [mm] (x,y)\in\IR^{2} [/mm] : [mm] x^{2}+y^{2}\le1 [/mm] } liege das durch die Gleichverteilung gegebene Wahrscheinlichkeitsmaß zugrunde. Berechne den Erwartungswert des Abstandes eines in K zufällig gewählten Punktes a vom Rand von K.

Also bisher habe ich folgendes:
Sei f die Dichte zur Gleichverteilung:  [mm] \pi*f(a)=\begin{cases}1,&\mbox{}|a|\le1\\0,&\mbox{sonst}\end{cases} [/mm]
[mm] (\integral_{\IR^{2}}^{}{f(a)da}=\integral_{K}^{}{1da}=\pi) [/mm]
und ich glaube die Formel für den Abstand vom Rand ist [mm] d(a)=|a-\bruch{a}{|a|}| [/mm] mit [mm] a\in [/mm] K, da bin ich mir aber überhaupt nicht sicher...
und ich weis jetzt auch nicht so recht wie ich weitermachen soll...

        
Bezug
Erwartungswert/Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Di 22.01.2008
Autor: luis52

Moin bobby,

vielleicht hilft dir die Diekussion hier auf die Spruenge.

vg Luis

Bezug
                
Bezug
Erwartungswert/Dichtefunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:30 Di 22.01.2008
Autor: bobby

also ehrlich gesagt, bringt mich das grad noch nicht weiter, hab versucht mir das bildlich klar zu machen aber ich komm mit r und R ncht klar, dachte r<R, aber wieso dann [mm] P(R\le [/mm] r)? und so richtig seh ich da noch keinen zusammenhang zu meinem abstandsproblem, dort ging es ja nur um die kreise an sich...?

Bezug
                        
Bezug
Erwartungswert/Dichtefunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:11 Di 22.01.2008
Autor: bobby

hab nochmal etwas rumgerechnet...kann es sein, das die wahrscheinlichkeitsdichte hier f(a)=2a ist?
dann wären der erwartungswert [mm] E(a)=\integral_{0}^{1}{a*f(a)da} =\integral_{0}^{1}{a*2ada}=\bruch{2}{3} [/mm]

Bezug
                                
Bezug
Erwartungswert/Dichtefunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 24.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Erwartungswert/Dichtefunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 24.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Erwartungswert/Dichtefunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Di 22.01.2008
Autor: generation...x

Wenn wir uns mal die Aufgabe anschauen, stellen wir fest, dass es auf den Winkel nicht ankommt, sondern nur auf den Radius [mm]r=\wurzel{x^2+y^2}[/mm]. Was wir suchen ist 1 - E(r), also müssen wir E(r) bestimmen. Das könnten wir jetzt recht mühsam über ein Doppelintegral tun, wir können uns aber auch überlegen, dass jedes r genau mit dem "Gewicht" des zugehörigen Kreisesumfangs [mm]\bruch{(2\pi r)}{\pi}=2r[/mm] in den Kreis eingeht. Also wäre

[mm]E(r)= \integral_{0}^{1}{2r \cdot r dr} = \bruch{2}{3}[/mm]

Als ist der gesuchte Wert [mm]\bruch{1}{3}[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de