www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert Regeln
Erwartungswert Regeln < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Fr 06.08.2010
Autor: Torkin

Aufgabe
X und Y seien zwei unabhängige Zufallsvariablen mit μ:=E(X), sigma²:=V(X) und E(Y)=0

Ist folgende Aussage richtig?
E([X − E(X)][Y − E(Y )]) = 0

Ich hätte das jetzt so gerechnet, stimmt das?
E((x-µ)*(Y)) = (E(X)+µ)*E(Y) = 0

Ins Besondere die Frage, ob folgende Regel stimmt:
E((X-µ)) = E(X) + µ?

        
Bezug
Erwartungswert Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 06.08.2010
Autor: fred97

Sind [mm] X_1,X_2 [/mm] Zufallsvariablen, so gilt:

1. [mm] $E(X_1+X_2)= E(X_1)+E(X_2)$. [/mm]

2. [mm] $E(aX_1+b)= aE(X_1)+b$. [/mm]

3. [mm] $E(X_1*X_2)= E(X_1)*E(X_2)$, [/mm] falls [mm] X_1,X_2 [/mm] stoch. unabh.

FRED

Bezug
                
Bezug
Erwartungswert Regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 06.08.2010
Autor: Torkin

Ähm, heißt das jetzt, das ist so richtig wie ich das gemacht habe?

Bezug
                        
Bezug
Erwartungswert Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Fr 06.08.2010
Autor: fred97


> Ähm, heißt das jetzt, das ist so richtig wie ich das
> gemacht habe?

Natürlich

FRED


Bezug
                                
Bezug
Erwartungswert Regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Fr 06.08.2010
Autor: Torkin

Alles klar, vielen Dank! Dann noch eine wahrscheinlich dumme Frage zum Schluss, gilt das auch umgekehrt?

E(x+µ) = E(X)-µ ?

Bezug
                                        
Bezug
Erwartungswert Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Fr 06.08.2010
Autor: MathePower

Hallo Torkin,

> Alles klar, vielen Dank! Dann noch eine wahrscheinlich
> dumme Frage zum Schluss, gilt das auch umgekehrt?
>  
> E(x+µ) = E(X)-µ ?


Hier meinst Du wohl

[mm]E\left(X+\mu\right)=E\left(X\right)+\mu[/mm]

Das folgt aus der Regel

[mm]E(aX_1+b)= aE(X_1)+b[/mm]

mit [mm]a=1,\ b=\mu[/mm]

.
Gruss
MathePower

Bezug
                                                
Bezug
Erwartungswert Regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 06.08.2010
Autor: Torkin

Hi,
danke für die Antwort. Nur damit ich das richtig verstehe:
E((X-µ)) = E(X) + µ
E((X+µ)) = E(X) + µ

Ist das so korrekt, falls ja, warum wird aus dem Minus ein Plus beim ersten Fall, aber umgekehrt nicht? Mir wird das leider nicht so ganz klar mit dieser Regel.

Bezug
                                                        
Bezug
Erwartungswert Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Fr 06.08.2010
Autor: MathePower

Hallo Torkin,

> Hi,
>  danke für die Antwort. Nur damit ich das richtig
> verstehe:
>  E((X-µ)) = E(X) + µ


Es gilt hier natürlich

[mm]E((X\blue{-}\mu)) = E(X) \blue{-} \mu[/mm]


>  E((X+µ)) = E(X) + µ
>  
> Ist das so korrekt, falls ja, warum wird aus dem Minus ein
> Plus beim ersten Fall, aber umgekehrt nicht? Mir wird das
> leider nicht so ganz klar mit dieser Regel.


Gruss
MathePower

Bezug
                                                                
Bezug
Erwartungswert Regeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Fr 06.08.2010
Autor: Torkin

Ah, ich habe mich schon gewundert, vielen, vielen Dank für die schnelle Antwort. TOP Community hier, muss man ja mal sagen! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de